因果机器学习(CausalML)前沿创新思路

结合了传统因果推断与机器学习的因果机器学习是目前AI+领域的前沿研究方向,其核心优势在于将因果逻辑融入数据驱动模型,从根本上解决了传统方法的缺陷。因此,它也是突破传统机器学习瓶颈的关键方向,不仅当下热度高,在未来几年仍会是研究热点。

今年,我们关于因果机器学习的创新可围绕动态建模、高维数据处理、无监督学习与跨领域应用这些方面展开,比如结合深度学习与稀疏因果图,开发轻量化混杂控制方法...既有理论深度又有实际价值,故事编好发高区问题不大。

当然,还是建议大家多关注顶会顶刊中相关的最新工作,结合一些具体领域(比如医疗)来展开。我这边整理好了12篇因果机器学习最新论文,大家需要参考的可直接领取。

全部论文+开源代码需要的同学看文末

Inferring heterogeneous treatment effects of crashes on highway traffic: A doubly robust causal machine learning approach

方法:本文提出了一种新颖的因果机器学习框架,通过Doubly Robust Learning方法估计交通事故对高速公路车速的异质性因果效应,解决了因果效应估计中的选择偏差和变量选择问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值