振动信号的处理与分析(积分变换)

1. 信号的分类

信号基本上可以归为以下几类:
在这里插入图片描述

  • 平稳信号指的是其统计特性不随时间发生变化的信号,每一次取样都可以代表信号本身,确定性信号与随机信号都属于这类信号。
  • 确定性信号对于任意一个时间,信号的值都是可以得知的,随机信号则无法在某一时间确定信号的值,随机信号只是在统计意义上不随时间发生改变,由此可知,随机信号的每一次取样都不一样,它只是在统计意义上确定。
  • 准周期信号指的是其不同频率成分之间存在不和谐的关系,例如,在这些频率当中,至少存在两个信号的频率比为 2 \sqrt{2} 2 这样的无理数。

2. 傅里叶变换

信号的处理与分析的目的在于从测量信号中尽可能的提取出有用的信息。

2.1 傅里叶级数

傅里叶级数是一种用来分析信号频率成分的方法,或者可以把满足条件的周期信号通过三角函数项进行近似。
假设周期信号为:
x ( t ) = x ( t + n T ) x(t)=x(t+n T) x(t)=x(t+nT)
其傅里叶级数的表达形式为:
x ( t ) = a 0 + ∑ k = 1 ∞ ( a k cos ⁡ ω k t + b k sin ⁡ ω k t ) x(t)=a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos \omega_{k} t+b_{k} \sin \omega_{k} t\right) x(t)=a0+k=1(akcosωkt+bksinωkt)
其中
a 0 = 1 T ∫ − T / 2 T / 2 x ( t ) d t a k = 2 T ∫ − T / 2 T / 2 x ( t ) cos ⁡ ω k t   d t b k = 2 T ∫ − T / 2 T / 2 x ( t ) sin ⁡ ω k t   d t ω k = k 2 π T = k ω 0 \begin{array}{l} a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} x(t) \mathrm{d} t \\ a_{k}=\frac{2}{T} \int_{-T / 2}^{T / 2} x(t) \cos \omega_{k} t \mathrm{~d} t \\ b_{k}=\frac{2}{T} \int_{-T / 2}^{T / 2} x(t) \sin \omega_{k} t \mathrm{~d} t \\ \omega_{k}=k \frac{2 \pi}{T}=k \omega_{0} \end{array} a0=T1T/2T/2x(t)dtak=T2T/2T/2x(t)cosωkt dtbk=T2T/2T/2x(t)sinωkt dtωk=kT2π=kω0
或者可以将其表达为指数形式
x ( t ) = ∑ k = − ∞ ∞ c k e j k ω 0 t c k = 1 T ∫ − T 2 T 2 x ( t ) e − j k ω 0 t   d t , k = 0 , ± 1 , ⋯ \begin{aligned} x(t) & =\sum_{k=-\infty}^{\infty} c_{k} \mathrm{e}^{\mathrm{j} k \omega_{0} t} \\ c_{k} & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \mathrm{e}^{-\mathrm{j} k \omega_{0} t} \mathrm{~d} t, \quad k=0, \pm 1, \cdots \end{aligned} x(t)ck=k=ckejkω0t=T12T2Tx(t)ejkω0t dt,k=0,±1,

2.2 傅里叶积分变换

傅里叶积分变换是傅里叶级数的推广情况,适用于周期为无限长的情况。

  • 傅里叶正变换:
    X ( ω ) = ∫ − ∞ + ∞ x ( t ) e − j ω t   d t X(\omega)=\int_{-\infty}^{+\infty} x(t) \mathrm{e}^{-\mathrm{j} \omega t} \mathrm{~d} t X(ω)=+x(t)ejωt dt
  • 傅里叶逆变换:
    x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( ω ) e j ω t   d ω x(t)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} X(\omega) \mathrm{e}^{\mathrm{j} \omega t} \mathrm{~d} \omega x(t)=2π1+X(ω)ejωt dω
    周期函数的傅里叶变换是离散的频率谱,非周期函数的傅里叶变换是连续的频率谱。频谱图可以看做是信号的幅值在频率上的分布情况。

2.3 傅里叶变换的性质

F [ f ( t ) ] = F ( ω ) , F [ g ( t ) ] = G ( ω ) \mathscr{F}[f(t)]=F(\omega), \quad \mathscr{F}[g(t)]=G(\omega) F[f(t)]=F(ω),F[g(t)]=G(ω),则傅里叶变换则有以下性质

  • 线性叠加性质
    F [ α f ( t ) + β g ( t ) ] = α F ( ω ) + β G ( ω ) F − 1 [ α F ( ω ) + β G ( ω ) ] = α f ( t ) + β g ( t ) \begin{array}{c} \mathscr{F}[\alpha f(t)+\beta g(t)]=\alpha F(\omega)+\beta G(\omega) \\ \mathscr{F}^{-1}[\alpha F(\omega)+\beta G(\omega)]=\alpha f(t)+\beta g(t) \end{array} F[αf(t)+βg(t)]=αF(ω)+βG(ω)F1[αF(ω)+βG(ω)]=αf(t)+βg(t)

  • 位移性
    F [ f ( t − t 0 ) ] = e − i ω t 0 F ( ω ) F − 1 [ F ( ω − ω 0 ) ] = e i ω 0 t f ( t ) \begin{array}{c} \mathscr{F}\left[f\left(t-t_{0}\right)\right]=e^{-i \omega t_{0}} F(\omega) \\ \mathscr{F}^{-1}\left[F\left(\omega-\omega_{0}\right)\right]=e^{i \omega_{0} t} f(t) \end{array} F[f(tt0)]=et0F(ω)F1[F(ωω0)]=eiω0tf(t)

  • 相似性
    F [ f ( a t ) ] = 1 ∣ a ∣ F ( ω a ) \mathscr{F}[f(a t)]=\frac{1}{|a|} F\left(\frac{\omega}{a}\right) F[f(at)]=a1F(aω)

  • 对称性
    F [ F ( t ) ] = 2 π f ( − ω ) \mathscr{F}[F(t)]=2 \pi f(-\omega) F[F(t)]=2πf(ω)
    其中, F ( t ) F(t) F(t)为信号 f ( t ) f(t) f(t)的傅里叶变换 F ( ω ) F(\omega) F(ω) ω = t \omega=t ω=t时的表现形式,即 F ( t ) = F ( ω ) ∣ t = ω F(t)=\left.F(\omega)\right|_{t=\omega} F(t)=F(ω)t=ω。从该性质中可以看出,当 f ( t ) f(t) f(t)为偶函数时,F(t)的傅里叶变换依然与 f ( t ) f(t) f(t)的函数相似,只是幅值需要乘以 2 π 2\pi 2π
    在这里插入图片描述
    利用该性质,我们可以求取一些复杂信号的傅里叶变换。

  • 微分关系
    F [ d n f ( t ) d t n ] = ( i ω ) n F ( ω ) F − 1 [ d n F ( ω ) d ω n ] = ( − i t ) n f ( t ) \begin{array}{c} \mathscr{F}\left[\frac{d^{n} f(t)}{d t^{n}}\right]=(i \omega)^{n} F(\omega) \\ \mathscr{F}^{-1}\left[\frac{d^{n} F(\omega)}{d \omega^{n}}\right]=(-i t)^{n} f(t) \end{array} F[dtndnf(t)]=()nF(ω)F1[dωndnF(ω)]=(it)nf(t)

  • 积分关系
    F [ ∫ − ∞ t x ( t ) d t ] = 1 j ω X ( ω ) \mathscr{F}[\int_{-\infty}^{\mathrm{t}} \mathrm{x}(t) dt]= \frac{1}{\mathrm{j\omega}} \mathrm{X}(\omega) F[tx(t)dt]=jω1X(ω)

  • 时域卷积定理
    F [ f ( t ) ∗ g ( t ) ] = F ( ω ) G ( ω ) \mathscr{F}[f(t) * g(t)]=F(\omega) G(\omega) F[f(t)g(t)]=F(ω)G(ω)

  • 频域卷积定理
    F [ f ( t ) g ( t ) ] = 1 2 π F ( ω ) ∗ G ( ω ) \mathscr{F}[f(t) g(t)]=\frac{1}{2 \pi} F(\omega) * G(\omega) F[f(t)g(t)]=2π1F(ω)G(ω)

  • 帕萨瓦尔定理
    X 1 ( f ) X_1(f) X1(f) X 2 ( f ) X_2(f) X2(f)分别为 x 1 ( t ) x_1(t) x1(t) x 2 ( t ) x_2(t) x2(t)的傅里叶变换,则帕萨瓦尔定理为
    ∫ − ∞ ∞ x 1 ( t ) x 2 ( t ) d t = ∫ − ∞ ∞ X 1 ( ω ) X 2 ∗ ( ω ) d ω = ∫ − ∞ ∞ X 1 ∗ ( ω ) X 2 ( ω ) d ω \int_{-\infty}^{\infty} x_{1}(t) x_{2}(t) \mathrm{d} t=\int_{-\infty}^{\infty} X_{1}(\omega) X_{2}^{*}(\omega) \mathrm{d} \omega=\int_{-\infty}^{\infty} X_{1}^{*}(\omega) X_{2}(\omega) \mathrm{d} \omega x1(t)x2(t)dt=X1(ω)X2(ω)dω=X1(ω)X2(ω)dω
    帕萨瓦尔定理表明:信号的能量在时域和频域上是相等的。

2.4 狄拉克函数及其性质

脉冲单位函数为:
δ ( t ) = { ∞ , t = 0 0 , t ≠ 0 \delta(t)=\left\{\begin{array}{ll} \infty, & t=0 \\ 0, & t \neq 0 \end{array}\right. δ(t)={,0,t=0t=0
并有 ∫ − ∞ ∞ δ ( t ) d t = 1 \int_{-\infty}^{\infty} \delta(t) \mathrm{d} t=1 δ(t)dt=1

  • 狄拉克函数的在 t 0 t_0 t0时刻的抽样特性为:
    ∫ − ∞ ∞ δ ( t − t 0 ) d t = 1 ∫ − ∞ ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 ) \int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) \mathrm{d} t=1\\ \int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) f(t) \mathrm{d} t=f\left(t_{0}\right) δ(tt0)dt=1δ(tt0)f(t)dt=f(t0)
  • 狄拉克函数的移位特性为:
    x ( t ) ∗ δ ( t ) = ∫ − ∞ ∞ x ( τ ) δ ( t − τ ) d τ = ∫ − ∞ ∞ x ( τ ) δ ( τ − t ) d τ = x ( t ) x ( t ) ∗ δ ( t + T ) = ∫ − ∞ ∞ x ( τ ) δ ( t + T − τ ) d τ = x ( t + T ) x(t) * \delta(t)=\int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) \mathrm{d} \tau=\int_{-\infty}^{\infty} x(\tau) \delta(\tau-t) \mathrm{d} \tau=x(t)\\ x(t) * \delta(t+T)=\int_{-\infty}^{\infty} x(\tau) \delta(t+T-\tau) \mathrm{d} \tau=x(t+T) x(t)δ(t)=x(τ)δ(tτ)dτ=x(τ)δ(τt)dτ=x(t)x(t)δ(t+T)=x(τ)δ(t+Tτ)dτ=x(t+T)

2.5 若干典型函数的傅里叶变换

  • 狄拉克函数
    δ ( t ) ⇔ 1 , 1 ⇔ δ ( f ) δ ( t − t 0 ) ⇔ e − j 2 π f t 0 , e j 2 π f 0 t ⇔ δ ( f + f 0 ) } \left.\begin{array}{l} \delta(t) \Leftrightarrow 1, \quad 1 \Leftrightarrow \delta(f) \\ \delta\left(t-t_{0}\right) \Leftrightarrow \mathrm{e}^{-\mathrm{j} 2 \pi ft_{0}}, \quad \mathrm{e}^{\mathrm{j} 2 \pi f_{0} t} \Leftrightarrow \delta\left(f+f_{0}\right) \end{array}\right\} δ(t)1,1δ(f)δ(tt0)ej2πft0,ej2πf0tδ(f+f0)}
  • x ( t ) = A e j 2 π f 0 t x(t)=A \mathrm{e}^{\mathrm{j} 2 \pi f_{0} t} x(t)=Aej2πf0t指数函数
    A e j 2 π f 0 t ⇔ A δ ( f − f 0 ) A \mathrm{e}^{\mathrm{j} 2 \pi f_{0} t} \Leftrightarrow A \delta\left(f-f_{0}\right) Aej2πf0tAδ(ff0)
  • x ( t ) = A cos ⁡ 2 π f 0 t x(t)=A \cos 2 \pi f_{0} t x(t)=Acos2πf0t x ( t ) = A sin ⁡ 2 π f 0 t x(t)=A \sin 2 \pi f_{0} t x(t)=Asin2πf0t三角函数
    A cos ⁡ 2 π f 0 t ⇔ A 2 [ δ ( f + f 0 ) + δ ( f − f 0 ) ] A sin ⁡ 2 π f 0 t ⇔ j A 2 [ δ ( f + f 0 ) − δ ( f − f 0 ) ] } \left.\begin{array}{l} A \cos 2 \pi f_{0} t \Leftrightarrow \frac{A}{2}\left[\delta\left(f+f_{0}\right)+\delta\left(f-f_{0}\right)\right] \\ A \sin 2 \pi f_{0} t \Leftrightarrow \mathrm{j} \frac{A}{2}\left[\delta\left(f+f_{0}\right)-\delta\left(f-f_{0}\right)\right] \end{array}\right\} Acos2πf0t2A[δ(f+f0)+δ(ff0)]Asin2πf0tj2A[δ(f+f0)δ(ff0)]}
  • 矩形窗
    w ( t ) = { 1 , ∣ t ∣ < τ 2 0 , ∣ t ∣ > τ 2 W ( f ) = ∫ − ∞ + ∞ w ( t ) e − j 2 π / t   d t = ∫ − τ / 2 τ / 2 e − j 2 π / t   d t = − 1 j 2 π f ( e − j π f τ − e j π / τ ) = τ sin ⁡ π f τ π f τ = τ sin ⁡ c ( π f τ ) \begin{array}{l} w(t)=\left\{\begin{array}{ll} 1, & |t|<\frac{\tau}{2} \\ 0, & |t|>\frac{\tau}{2} \end{array}\right. \\ W(f)=\int_{-\infty}^{+\infty} w(t) \mathrm{e}^{-\mathrm{j} 2 \pi / t} \mathrm{~d} t=\int_{-\tau / 2}^{\tau / 2} \mathrm{e}^{-\mathrm{j} 2 \pi / t} \mathrm{~d} t \\ =\frac{-1}{\mathrm{j} 2 \pi f}\left(\mathrm{e}^{-\mathrm{j} \pi f \tau}-\mathrm{e}^{\mathrm{j} \pi / \tau}\right)=\tau \frac{\sin \pi f_{\tau}}{\pi f \tau} \\ =\tau \sin c\left(\pi f_{\tau}\right) \\ \end{array} w(t)={1,0,t<2τt>2τW(f)=+w(t)ej2π/t dt=τ/2τ/2ej2π/t dt=j2πf1(ejπfτejπ/τ)=τπfτsinπfτ=τsinc(πfτ)
    在这里插入图片描述
  • 周期单位脉冲函数的傅里叶变换
    单位脉冲周期函数的表达式为:
    g ( t ) = ∑ k = − ∞ ∞ δ ( t − k T s ) g(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{\mathrm{s}}\right) g(t)=k=δ(tkTs)
    其傅里叶变换为:
    G ( f ) = 1 T s ∑ k = − ∞ ∞ δ ( f − k f s ) = 1 T s ∑ k = − ∞ ∞ δ ( f − k T s ) G(f)=\frac{1}{T_{\mathrm{s}}} \sum_{k=-\infty}^{\infty} \delta\left(f-k f_{s}\right)=\frac{1}{T_{\mathrm{s}}} \sum_{k=-\infty}^{\infty} \delta\left(f-\frac{k}{T_{\mathrm{s}}}\right) G(f)=Ts1k=δ(fkfs)=Ts1k=δ(fTsk)
    同样,在频域内的单位脉冲周期函数
    G ( f ) = ∑ k = − ∞ δ ( f − k f s ) G(f)=\sum_{k=-\infty} \delta\left(f-k f_{\mathrm{s}}\right) G(f)=k=δ(fkfs)
    其傅里叶变换为:
    g ( t ) = F − 1 [ G ( f ) ] = 1 f s ∑ k = − ∞ ∞ δ ( t − k T s ) g(t)=F^{-1}[G(f)]=\frac{1}{f_{\mathrm{s}}} \sum_{k=-\infty}^{\infty} \delta\left(t-k T_{\mathrm{s}}\right) g(t)=F1[G(f)]=fs1k=δ(tkTs)
    其中, T s = 1 / f s T_s=1/f_s Ts=1/fs

3. 抽样信号的傅里叶变换

时域信号经过抽样、量化和编码的过程,才能使之成为便于计算机处理的离散数字信号,其离散化的过程如下图所示:
在这里插入图片描述
其中,抽样脉冲函数的表达式为:
s ( t ) = ∑ k = − ∞ ∞ δ ( t − k T s ) s(t)=\sum_{k=-\infty}^{\infty} \delta\left(t-k T_{\mathrm{s}}\right) s(t)=k=δ(tkTs)
所谓时域抽样信号,指的是时域连续信号 x ( t ) x(t) x(t)与抽样脉冲序列 s ( t ) s(t) s(t)相乘,即:
x s ( t ) = x ( t ) s ( t ) x_{\mathrm{s}}(t)=x(t) s(t) xs(t)=x(t)s(t)
其傅里叶变换为:
X s ( f ) = F [ x s ( t ) ] = X ( f ) ∗ S ( f ) = 1 T s ∑ n = − ∞ ∞ X ( f − n f s ) X_s(f)=F[x_s(t)]=X(f)*S(f)=\frac{1}{T_{\mathrm{s}}} \sum_{n=-\infty}^{\infty} X\left(f-n f_{\mathrm{s}}\right) Xs(f)=F[xs(t)]=X(f)S(f)=Ts1n=X(fnfs)
在这里插入图片描述
对比原信号与抽样信号的频谱图,可以发现抽样信号仍然可以很好地保留原信号的频谱特征。
同样,为了便于计算机处理频域信号,我们也需要对频域信号进行离散化。所谓的频域抽样信号,就是频域连续信号 X ( f ) X(f) X(f)与频域抽样脉冲序列 S ( f ) S(f) S(f)相乘,所得的信号就是频域抽样信号,即:
S ( f ) = ∑ k = − ∞ ∞ δ ( f − k f s ) X s ( f ) = X ( f ) S ( f ) S(f)=\sum_{k=-\infty}^{\infty} \delta\left(f-k f_{\mathrm{s}}\right)\\ X_{\mathrm{s}}(f)=X(f) S(f) S(f)=k=δ(fkfs)Xs(f)=X(f)S(f)
该信号的傅里叶逆变换为:
x s ( t ) = F − 1 [ X s ( f ) ] = x ( t ) ∗ s ( t ) = 1 f s ∑ n = − ∞ ∞ x ( t − n T s ) x_{\mathrm{s}}(t)=F^{-1}\left[X_{\mathrm{s}}(f)\right]=x(t) * s(t)=\frac{1}{f_{\mathrm{s}}} \sum_{n=-\infty}^{\infty} x\left(t-n T_{\mathrm{s}}\right) xs(t)=F1[Xs(f)]=x(t)s(t)=fs1n=x(tnTs)
在这里插入图片描述
对比频域信号与频域抽样信号的时域图,可以发现,频域信号在抽样之后,仍然可以很好的保留原信号的时域特性。

4. 离散傅里叶变换

4.1 香农采样定律

前面已经写出了周期函数展开成傅里叶级数的复指数形式,这个式子主要还是从连续的角度出发,对周期函数进行频域分析。事实上,我们也可以在函数的一个周期内将函数划分为多份,在这个基础上求得傅里叶级数的 c k c_k ck。能得到多少 c k c_k ck,取决于一个周期内划分了多少段。假如划分了 N N N段,则一共可以得到 N / 2 N/2 N/2个互不相关的 c k c_k ck。如果说原函数的最高次谐波频率不高于 f N / 2 f_{N/2} fN/2,则离散傅里叶之后的频率普与原信号的频率谱相等,否则,高阶信号未被考虑进来,离散傅里叶后得到的频谱发生失真,此时将会发生混频。如要求不发生混频,采样频率必须大于最高次谐波频率的两倍,这就是香农采样定律。
f s > 2 f m f_{\mathrm{s}}>2 f_{\mathrm{m}} fs>2fm

4.2 非周期函数的离散傅里叶变换

在对非周期信号进行傅里叶变换时,我们要截断某一部分进行处理,而截断将会带来误差。非周期函数的离散傅里叶分析的基本思路是:对非周期函数的某一部分进行截断,将截断保留下来的信号做周期重复拓广,使之成为周期函数,然后在这个函数的基础上进行离散傅里叶分析。如果要求截断后的信号不发生失真,同样要求采样频率至少为最高次谐波频率的两倍。采样时间 T T T,采样间隔 Δ t \Delta t Δt,采样量 N N N,采样频率 f s f_s fs,频率分辨率 Δ f \Delta f Δf之间的关系为:
f s = 1 Δ t , Δ f = 1 T , T = N Δ t = N f s f_{\mathrm{s}}=\frac{1}{\Delta t}, \quad \Delta f=\frac{1}{T}, \quad T=N \Delta t=\frac{N}{f_{\mathrm{s}}} fs=Δt1,Δf=T1,T=NΔt=fsN
N N N f m a x f_{max} fmax确定之后,采样时间也就随之确定
T ⩾ N 2 f max ⁡ T \geqslant \frac{N}{2 f_{\max }} T2fmaxN
为了不使系统产生混频而提高采样频率 f s f_s fs,会导致采样时间增大,从而导致采样分辨率降低,这时我们需要先使信号通过一个低通滤波器,截断高次谐波频率信号即可,这样就可以认为的降低信号中最高次谐波的频率。

4.3 信号的泄露与畸变

信号泄露的原因是窗函数的频谱是一个连续谱,它包括一个主瓣和无数的旁瓣,使得本应该集中在主瓣的能量都集中在旁瓣上了。避免泄露的办法是保证窗长 τ \tau τ等于被截取函数的周期 T T T的整数倍。
对于非周期函数,可以采用特定的窗函数,以达到抑制旁瓣的效果,从而减少在远邻频带上的泄露。

5. 功率谱与功率谱密度分析

功率谱与功率谱密度是从能量的角度来对信号的频域进行分析的。
周期函数的傅里叶级数的复指数形式可以写成以下形式:
x ( t ) = 1 2 ∑ k = 1 ∞ ( C k e j k ω 0 t + C k ∗ e − j k ω 0 t ) = Re ⁡ ( ∑ k = 1 ∞ C k e j k ω 0 t ) x(t)=\frac{1}{2} \sum_{k=1}^{\infty}\left(C_{k} \mathrm{e}^{\mathrm{j} k \omega_{0} t}+C_{k}^{*} \mathrm{e}^{-\mathrm{j} k \omega_{0} t}\right)=\operatorname{Re}\left(\sum_{k=1}^{\infty} C_{k} \mathrm{e}^{\mathrm{j} k \omega_{0} t}\right) x(t)=21k=1(Ckejkω0t+Ckejkω0t)=Re(k=1Ckejkω0t)
而信号的均方值为:
x 2 ‾ = = ∑ k = 1 ∞ 1 2 C k C k ∗ = ∑ k = 1 ∞ 1 2 ∣ C k ∣ 2 = ∑ k = 1 ∞ ( 1 2 ∣ C k ∣ ) 2 \overline{x^{2}}==\sum_{k=1}^{\infty} \frac{1}{2} C_{k} C_{k}^{*}=\sum_{k=1}^{\infty} \frac{1}{2}\left|C_{k}\right|^{2}=\sum_{k=1}^{\infty}\left(\frac{1}{\sqrt{2}}\left|C_{k}\right|\right)^{2} x2==k=121CkCk=k=121Ck2=k=1(2 1Ck)2
其中, 1 2 C k C k ∗ \frac{1}{2} C_{k} C_{k}^{*} 21CkCk的物理含义是总功率中属于以 f k f_k fk为中心频率,以 Δ f \Delta f Δf为间距的那部分频段的功率,用符号 W ( f k ) W\left(f_{k}\right) W(fk)来表示,即:
W ( f k ) = 1 2 C k C k ∗ W\left(f_{k}\right)=\frac{1}{2} C_{k} C_{k}^{*} W(fk)=21CkCk
功率谱除以频率间隔,定义为功率谱密度,即:
G ( f k ) = W ( f k ) / Δ f = C k C k ∗ / ( 2 Δ f ) G\left(f_{k}\right)=W\left(f_{k}\right) / \Delta f=C_{k} C_{k}^{*} /(2 \Delta f) G(fk)=W(fk)f=CkCk/(f)
根据功率谱密度的定义,信号的均方值也可以写成:
x 2 ‾ = ∫ 0 ∞ G ( f ) d f \overline{x^{2}}=\int_{0}^{\infty} G(f) \mathrm{d} f x2=0G(f)df
根据功率谱密度的定义,功率谱密度反映的是信号的能量在频域上分布的密集程度。

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
摘要:绿色低碳的现代能源体系背景下,清洁能源的安全高效利用对加快能源结构调整及推进生态文明建设意义重大。作为清洁能源转换的核心设备,水电、风电机组的巨型化和耦合化使得其运行过程中的振动问题和故障风险日益突出,这对系统的振动信号分析与早期故障辨识方法提出了更高要求。因此,本文以水轮发电机组、风力发电机组等大型旋转机械为研究对象,通过凝炼系统早期故障诊断中的关键科学问题,解析了多故障源耦合激励下的系统非线性动力学特性和故障机理,深入开展了基于噪声干扰抑制和噪声辅助分析的早期故障信号辨识理论研究,提出了大型旋转机械复合故障分离与特征提取方法,构建了系统关键设备性能评估与劣化分析模型,对保障机组安全稳定运行和推进状态检修体制改革具有一定的理论创新意义和工程应用价值。论文主要研究工作及创新性成果如下:(1)针对大型旋转机械中贯流式机组操作油管不对中、受油器松动及操作油管与浮动瓦碰摩问题,建立了考虑操作油杂质影响的时变非线性油膜力模型,并搭建了多源激励下的机组耦合故障动力学模型,研究了系统随不对中分量、操作油杂质和受油器径向刚度等参数变化出现的周期运动、拟周期运动等非线性动力学行为,揭示了多故障源耦合激励下的系统动力学特性和故障机理。(2)针对大型旋转机械早期故障辨识受强背景噪声干扰问题,开展了基于噪声干扰抑制的微弱故障信号检测研究,一方面,分析了噪声强度对传统经验模态分解降噪算法中最优分量重构效果的影响,研究了不同固有模态分量重构后信号概率密度函数的豪斯多夫距离变化趋势,提出了一种基于重构信号概率密度函数相似性的经验模态分解降噪算法;另一方面,讨论了大幅值噪声信号对传统经验模态分解降噪算法中固有模态分量阈值处理效果的影响,引入了熵阈值代替直接对每个分量的采样点进行阈值化,并结合分位数理论构建了多尺度阈值并计算了原始信号所在区域的故障概率,提出了一种基于概率熵阈值的经验模态分解降噪算法。通过模型仿真、实验和工程实例验证了所提出降噪算法在大型旋转机械微弱故障信号检测中的有效性。(3)考虑基于噪声辅助分析理论随机共振来增强大型旋转机械早期故障特征,定性和定量分析了不同噪声强度下二维Duffing振子模型随机共振方法的周期特征增强效果,推导了二维Duffing振子模型随机共振现象发生的必要条件,并研究了不同参数条件下系统输出信号特征幅值随噪声强度的变化趋势。在此基础上构造了基于排列熵的信号筛选准则并提出了基于二维部分Duffing振子模型随机共振理论的故障特征增强算法,实现了噪声能量向故障信号的最大化转移,并成功应用于大型旋转机械早期磨损故障特征识别。(4)针对大型旋转机械中风电机组早期复合故障特征耦合及微弱故障信号难以识别问题,分析了复合故障模式下快速峭度图中的多个谱峭度极大值现象,建立了带通滤波器模型进行解卷积处理获取显著故障信号,并构建了带阻滤波器模型进行窄带带阻滤波滤除显著共振频谱信号从而抑制其对微弱故障特征识别影响,提出了基于连续谱峭度解卷积的早期复合故障诊断方法。通过典型模型仿真和工程实例应用表明所提出算法有效实现了大型旋转机械复合故障分离和微弱故障特征提取。(5)考虑到大型旋转机械关键设备的性能对整个系统安全稳定运行的重要性,从故障概率变化的角度开展了基于逻辑回归理论的设备劣化趋势分析和状态评估研究,引入了改进K均值聚类算法对逻辑回归模型的自变量进行离散化处理来增强模型泛化能力和鲁棒性,建立了基于数据驱动的大型旋转机械关键设备性能评估模型,并成功应用于工程实例中设备故障演化过程分析,同时对大型旋转机械早期故障辨识也有一定指导意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值