振动力学篇三:多自由度系统

一般来讲,具有n个自由度的多自由度系统,其位移可用 n n n个广义坐标来描述,系统的运动方程为 n n n个二阶常微分方程。

1. 多自由度系统动力学方程

一般来讲, n n n阶动力学系统的控制方程为:
[ M ] { x ¨ } + [ C ] { x ˙ } + [ K ] { x } = { F ( t ) } [M]\{\ddot{x}\}+[C]\{\dot{x}\}+[K]\{x\}=\{F(t)\} [M]{x¨}+[C]{x˙}+[K]{x}={F(t)}
[ ]代表矩阵,{ }代表列向量
其中, [ M ] [M] [M]为系统的质量矩阵, [ C ] [C] [C]为系统的阻尼矩阵, [ K ] [K] [K]为系统的刚度矩阵。各个矩阵元素的物理意义为:

  • [ M ] [M] [M]矩阵元素 m i j m_{ij} mij的物理含义是仅在 j j j点处产生单位加速度时,需要在 i i i点处施加的广义力。
  • [ C ] [C] [C]矩阵元素 c i j c_{ij} cij的物理含义是仅在 j j j点处产生单位速度时,需要在 i i i点处施加的广义力。
  • [ K ] [K] [K]矩阵元素 k i j k_{ij} kij的物理含义是仅在 j j j点处产生单位位移时,需要在 i i i点处施加的广义力。

2. 多自由度系统的模态分析

首先,先考虑无阻尼系统的模态
[ M ] { x ¨ } + [ K ] { x } = { 0 } [M]\{\ddot{x}\}+[K]\{x\}=\{0\} [M]{x¨}+[K]{x}={0}

2.1 固有频率与固有振型

行列式 ∣ [ K ] − ω 2 [ M ] ∣ \left|[K]-\omega^{2}[M]\right| [K]ω2[M] 的特征值就是系统的固有频率
∣ [ K ] − ω 2 [ M ] ∣ = 0 \left|[K]-\omega^{2}[M]\right|=0 [K]ω2[M] =0
将得到的固有频率带入下式
( [ K ] − ω 2 [ M ] ) { u } = { 0 } \left([K]-\omega^{2}[M]\right)\{u\}=\{0\} ([K]ω2[M]){u}={0}
所解得的非零向量 { u } \{u\} {u}就是系统的固有振型,或称为主振型。各阶固有振型组成的方阵称为振型矩阵

  • 关于固有振型的物理含义:当系统中的各个质量点都按照某一频率做简谐振动时,我们就称这个运动为系统在该频率下的主振动。在主振动中,系统中各点位移的比值将保持不变,比值与固有振型中各元素的比值一致,这就是主振动的物理含义。

2.2 固有振型的正交性

当质量矩阵与刚度矩阵都是对称矩阵时, n n n个固有频率对应的固有振型之间关于 [ M ] [M] [M] [ K ] [K] [K]都是正交的,即:
{ u ( j ) } T [ M ] { u { i } } = 0 ( i ≠ j ) { u ( j ) } T [ K ] { u { i } } = 0 ( i ≠ j ) \left\{u^{(j)}\right\}^{\mathrm{T}}[M]\left\{u^{\{i\}}\right\}=0(i \neq j)\\ \left\{u^{(j)}\right\}^{\mathrm{T}}[K]\left\{u^{\{i\}}\right\}=0(i \neq j) {u(j)}T[M]{u{i}}=0(i=j){u(j)}T[K]{u{i}}=0(i=j)
{ u ( j ) } \left\{u^{(j)}\right\} {u(j)}代表振型矩阵的第 j j j列。
i = j i=j i=j,有:
{ u ( i ) } T [ M ] { u { i } } = M i , { u ( i ) } T [ K ] { u { i } } = K i \left\{u^{(i)}\right\}^{\mathrm{T}}[M]\left\{\boldsymbol{u}^{\{i\}}\right\}=M_{i},\left\{\boldsymbol{u}^{(i)}\right\}^{\mathrm{T}}[K]\left\{\boldsymbol{u}^{\{i\}}\right\}=K_{i} {u(i)}T[M]{u{i}}=Mi,{u(i)}T[K]{u{i}}=Ki
这里, M i M_i Mi K i K_i Ki分别称为系统的主质量和主刚度。

2.3 振型矩阵与正则振型矩阵

  • 振型矩阵:把各阶固有振型 { u ( i ) } \left\{u^{(i)}\right\} {u(i)}组成的方阵称为阵型矩阵,即:
    [ u ] = [ { u ( 1 ) } { u ( 2 ) } ⋯ { u ( n ) } ] [u]=\left[\left\{u^{(1)}\right\}\left\{u^{(2)}\right\} \cdots\left\{u^{(n)}\right\}\right] [u]=[{u(1)}{u(2)}{u(n)}]
  • 主质量矩阵 [ M P ] [M_P] [MP]与主刚度矩阵 [ K P ] [K_P] [KP]
    [ M p ] = [ u ] T [ M ] [ u ] = [ ⋱ 0 M i 0 ⋱ ] \left[M_{\mathrm{p}}\right]=[u]^{\mathrm{T}}[M][u]=\left[\begin{array}{lll} \ddots & & 0 \\ & M_{i} & \\ 0 & & \ddots \end{array}\right] [Mp]=[u]T[M][u]= 0Mi0
    [ K p ] = [ u ] T [ K ] [ u ] = [ ⋱ 0 K i 0 ⋱ ] \left[K_{\mathrm{p}}\right]=[u]^{\mathrm{T}}[K][u]=\left[\begin{array}{ccc} \ddots & & 0 \\ & K_{i} & \\ 0 & & \ddots \end{array}\right] [Kp]=[u]T[K][u]= 0Ki0
  • 正则振型矩阵
    对固有振型做如下变换:
    { u N ( i ) } = { u ( i ) } M i \left\{u_{\mathrm{N}}^{(i)}\right\}=\frac{\left\{u^{(i)}\right\}}{\sqrt{M_{i}}} {uN(i)}=Mi {u(i)}
    可得:
    { u N ( i ) } T [ M ] { u N ( i ) } = 1 { u N ( i ) } T [ K ] { u N ( i ) } = ω i 2 \left\{u_{\mathrm{N}}^{(i)}\right\}^{\mathrm{T}}[M]\left\{u_{\mathrm{N}}^{(i)}\right\}=1\\ \left\{u_{\mathrm{N}}^{(i)}\right\}^{\mathrm{T}}[K]\left\{u_{\mathrm{N}}^{(i)}\right\}=\omega_{i}^{2} {uN(i)}T[M]{uN(i)}=1{uN(i)}T[K]{uN(i)}=ωi2
    { u N ( i ) } \left\{u_{\mathrm{N}}^{(i)}\right\} {uN(i)}称为正规化(归一化/标准化)振型。由此矩阵的新矩阵称为正则振型矩阵:
    [ u N ] = [ { u N ( 1 ) } { u N ( 2 ) } ⋯ { u N ( n ) } ] \left[u_{\mathrm{N}}\right]=\left[\left\{u_{\mathrm{N}}^{(1)}\right\}\left\{u_{\mathrm{N}}^{(2)}\right\} \cdots\left\{u_{\mathrm{N}}^{(n)}\right\}\right] [uN]=[{uN(1)}{uN(2)}{uN(n)}]
    振型矩阵与正则振型矩阵具有下列性质:
    [ u ] − 1 = [ M p ] − 1 [ u ] T [ M ] = [ K p ] − 1 [ u ] T [ K ] [ u N ] − 1 = [ u N ] T [ M ] [u]^{-1}=\left[M_{\mathrm{p}}\right]^{-1}[u]^{\mathrm{T}}[M]=\left[K_{\mathrm{p}}\right]^{-1}[u]^{\mathrm{T}}[K]\\ \left[u_{\mathrm{N}}\right]^{-1}=\left[u_{\mathrm{N}}\right]^{\mathrm{T}}[M] [u]1=[Mp]1[u]T[M]=[Kp]1[u]T[K][uN]1=[uN]T[M]

2.4 主坐标与正则坐标

  • 主坐标与正则坐标的意义:通过对 x x x进行坐标变换 { x } = [ u ] { q } \{x\}=[u]\{q\} {x}=[u]{q},我们可以得到:
    q ¨ i + ω i 2 q i = 0 ( i = 1 , 2 , ⋯   , n ) \ddot{q}_{i}+\omega_{i}^{2} q_{i}=0(i=1,2, \cdots, n) q¨i+ωi2qi=0(i=1,2,,n)
    或者利用正则化振型坐标进行坐标变换 { x } = [ u N ] { q N } \{x\}=[u_N]\{q_N\} {x}=[uN]{qN},我们可以得到
    q ¨ N i + ω i 2 q N i = 0 ( i = 1 , 2 , ⋯   , n ) \ddot{q}_{\mathrm{N} i}+\omega_{i}^{2} q_{\mathrm{N} i}=0(i=1,2, \cdots, n) q¨Ni+ωi2qNi=0(i=1,2,,n)
    上式表明,通过主坐标或者正则坐标,振动系统已经解耦,我们就可以利用求解单自由度系统的方法求解多自由度系统。其中, { q } \{q\} {q}称为主坐标, { q N } \{q_N\} {qN}称为正则坐标。

3. 无阻尼系统的响应

3.1 利用主振动的线性组合求解(自由振动状态)

多自由度系统的解可以表示为振型的线性组合(因为各振型之间线性无关),即:
{ x } = ∑ i = 1 n C i { u ( i ) } sin ⁡ ( ω i t − φ i ) \{x\}=\sum_{i=1}^{n} C_{i}\left\{u^{(i)}\right\} \sin \left(\omega_{i} t-\varphi_{i}\right) {x}=i=1nCi{u(i)}sin(ωitφi)
或者:
{ x } = ∑ i = 1 n { u ( i ) } ( A i sin ⁡ ω i t + B i cos ⁡ ω i t ) \{x\}=\sum_{i=1}^{n}\left\{u^{(i)}\right\}\left(A_{i} \sin \omega_{i} t+B_{i} \cos \omega_{i} t\right) {x}=i=1n{u(i)}(Aisinωit+Bicosωit)
利用 t = 0 t=0 t=0时,系统的位置与速度,即可得到各系数 A i A_i Ai B i B_i Bi

3.2 振型叠加法(一般状态)

振型叠加法的本质是把问题从物理坐标转换到模态坐标下,在转换的过程中该系统解耦,由此我们可利用求解单自由度系统的方法,将求解后的模态坐标再换回到物理坐标之中。振型叠加法的一般步骤为:

  • step1:确定系统的质量矩阵 [ M ] [M] [M]与刚度矩阵 [ K ] [K] [K]
  • step2:求固有频率与振型
  • step3:确定正则振型矩阵
  • step4:将初始条件变换到模态坐标下
    { q N 0 } = [ u N ] − 1 { x 0 } = [ u N ] T [ M ] { x 0 } , { q ˙ N 0 } = [ u N ] − 1 { x ˙ 0 } = [ u N ] T [ M ] { x ˙ 0 } \left\{q_{\mathrm{N} 0}\right\}=\left[u_{\mathrm{N}}\right]^{-1}\left\{x_{0}\right\}=\left[u_{\mathrm{N}}\right]^{\mathrm{T}}[M]\left\{x_{0}\right\},\left\{\dot{q}_{\mathrm{N} 0}\right\}=\left[u_{\mathrm{N}}\right]^{-1}\left\{\dot{x}_{0}\right\}=\left[u_{\mathrm{N}}\right]^{\mathrm{T}}[M]\left\{\dot{x}_{0}\right\} {qN0}=[uN]1{x0}=[uN]T[M]{x0},{q˙N0}=[uN]1{x˙0}=[uN]T[M]{x˙0}
  • step5:对激励力正则化
    { F N ( t ) } = [ u N ] T { F ( t ) } \left\{F_{\mathrm{N}}(t)\right\}=\left[u_{\mathrm{N}}\right]^{\mathrm{T}}\{F(t)\} {FN(t)}=[uN]T{F(t)}
  • step6:计算模态坐标下系统的解
  • step7:将模态坐标下的解转回到物理坐标下

4. 黏性阻尼系统的强迫振动

阻尼矩阵通过模态变换的方法并不能解耦,因此常用以下两种处理手段

4.1 比例阻尼

如果阻尼矩阵可以表达为质量矩阵和刚度矩阵的线性组合,则称之为比例阻尼,即:
[ C ] = α [ M ] + β [ K ] [C]=\alpha[M]+\beta[K] [C]=α[M]+β[K]
对阻尼矩阵进行坐标变换后
[ u N ] T [ C ] [ u N ] = α [ E ] + β [ ω i 2 ] \left[u_{\mathrm{N}}\right]^{\mathrm{T}}[C]\left[u_{\mathrm{N}}\right]=\alpha[E]+\beta\left[\omega_{i}^{2}\right] [uN]T[C][uN]=α[E]+β[ωi2]
系统的动力学方程则为:
{ q ¨ N } + ( α [ E ] + β [ ω i 2 ] ) { q ˙ N } + [ ω i 2 ] { q N } = { F N ( t ) } \left\{\ddot{q}_{\mathrm{N}}\right\}+\left(\alpha[E]+\beta\left[\omega_{i}^{2}\right]\right)\left\{\dot{q}_{\mathrm{N}}\right\}+\left[\omega_{i}^{2}\right]\left\{q_{\mathrm{N}}\right\}=\left\{F_{\mathrm{N}}(t)\right\} {q¨N}+(α[E]+β[ωi2]){q˙N}+[ωi2]{qN}={FN(t)}

4.2 非比例阻尼

如果阻尼矩阵并不能表达为质量矩阵和刚度矩阵的线性组合,则采用复模态理论。

5. 系统固有频率相等或者为零的情况

  • 系统存在固有频率相等的情况,即 [ K ] − ω 2 [ M ] [K]-\omega^{2}[M] [K]ω2[M]存在相等的特征值,这一般是由于系统具有对称性或者是其他原因导致的。
  • 系统具有零频率,说明系统的运动存在刚体模态,出现这种情况是因为系统的约束不完整。
  • 4
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Matlab是一种功能强大的编程语言和工具,常用于数学计算、数据分析和科学模拟等领域。在双自由度振动力学模型中,Matlab可以提供强大的数值计算和可视化功能。 双自由度振动力学模型通常由两个质点组成,每个质点都可以在空间中沿着特定方向进行振动。通过求解质点的运动方程,我们可以得到系统振动行为。 在Matlab中,我们可以使用符号运算来建立质点的运动方程。首先,我们定义质点的位移、速度和加速度。然后,根据牛顿第二定律,我们可以建立质点的运动方程。同时,我们还可以定义质点的质量、弹性系数和阻尼系数,从而完整描述系统的特性。 通过Matlab中的数值求解方法,如欧拉法或四阶龙格-库塔法,我们可以计算系统在不同时间步长下的振动响应。通过调整参数和初始条件,我们可以模拟出不同弹性和阻尼特性下的振动行为。 此外,Matlab还提供了丰富的可视化工具,可以帮助我们直观地展示系统振动模式和振动响应。通过绘制时间-位移曲线、相图和频谱图,我们可以更好地理解和分析系统振动特性。 总之,在双自由度振动力学模型中,Matlab提供了一个强大的工具,可以帮助我们建立运动方程、求解数值解,并可视化系统振动行为。通过Matlab的使用,我们可以更深入地研究和理解振动现象,并应用于工程问题的分析和解决。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值