多自由度系统模态分析与试验

1. 频响函数

对于一 N N N自由度系统,其动力学控制方程为:
[ M ] { x ¨ } + [ C ] { x ˙ } + [ K ] { x } = { f } [M]\{\ddot{x}\}+[C]\{\dot{x}\}+[K]\{x\}=\{f\} [M]{x¨}+[C]{x˙}+[K]{x}={f}
若激励力为一正弦激励,则系统模态坐标与物理坐标的稳态解均为正弦运动,即:
{ f } = { F } e j ω t , { q } = { Q } e j ω t , { x } = { X } e j ω t \{f\}=\{F\} \mathrm{e}^{\mathrm{j} \omega t}, \quad\{q\}=\{Q\} \mathrm{e}^{\mathrm{j} \omega t}, \quad\{x\}=\{X\} \mathrm{e}^{\mathrm{j} \omega t} {f}={F}ejωt,{q}={Q}ejωt,{x}={X}ejωt
可得:
{ X } = [ Φ ] ( [ k r ] − ω 2 [ m r ] + j ω [ c r ] ) − 1 [ Φ ] T { F } = [ Φ ] [ Y r ] [ Φ ] T { F } = [ H ] { F } \{X\}=[\Phi]\left(\left[k_{r}\right]-\omega^{2}\left[m_{r}\right]+\mathrm{j} \omega\left[c_{r}\right]\right)^{-1}[\Phi]^{\mathrm{T}}\{F\}=[\Phi]\left[Y_{r}\right][\Phi]^{\mathrm{T}}\{F\}=[H]\{F\} {X}=[Φ]([kr]ω2[mr]+jω[cr])1[Φ]T{F}=[Φ][Yr][Φ]T{F}=[H]{F}
上式为频率响应预测公式,其中:
[ H ] = [ Φ ] [ Y r ] [ Φ ] T [ Y r ] = diag ⁡ [ Y 1 , Y 2 , ⋯   , Y N ] Y r = ( k r − ω 2 m r + j ω c r ) − 1 \begin{array}{l} {[H]=[\Phi]\left[Y_{r}\right][\Phi]^{\mathrm{T}}} \\ {\left[Y_{r}\right]=\operatorname{diag}\left[Y_{1}, Y_{2}, \cdots, Y_{N}\right]} \\ Y_{r}=\left(k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}\right)^{-1} \end{array} [H]=[Φ][Yr][Φ]T[Yr]=diag[Y1,Y2,,YN]Yr=(krω2mr+jωcr)1
[ H ] [H] [H]被称为频响函数矩阵,对于该矩阵中的任意一元素 H i j ( ω ) H_{ij}(\omega) Hij(ω),其表达式为:
H i j ( ω ) = ∑ r = 1 N Y r φ i r φ j r = ∑ r = 1 N φ i r φ j r k r − ω 2 m r + j ω c r H_{i j}(\omega)=\sum_{r=1}^{N} Y_{r} \varphi_{i r} \varphi_{j r}=\sum_{r=1}^{N} \frac{\varphi_{i r} \varphi_{j r}}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}} Hij(ω)=r=1NYrφirφjr=r=1Nkrω2mr+jωcrφirφjr
H i j H_{ij} Hij也是系统在 i , j i,j i,j两点之间的频响函数,其物理意义为:在 j j j点作用单位力时,在 i i i点引起的响应。

2. 频响函数与模态参数之间的关系

2.1 频响函数的任意一行

频响函数矩阵的任意一行的表达式为:
[ H i 1 H i 2 ⋯ H i N ] = ∑ r = 1 N φ i r k r − ω 2 m r + j ω c r [ φ 1 r φ 2 r ⋯ φ N r ] \left[\begin{array}{llll} H_{i 1} & H_{i 2} & \cdots & H_{i N} \end{array}\right]=\sum_{r=1}^{N} \frac{\varphi_{i r}}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}}\left[\begin{array}{llll} \varphi_{1 r} & \varphi_{2 r} & \cdots & \varphi_{N_{r}} \end{array}\right] [Hi1Hi2HiN]=r=1Nkrω2mr+jωcrφir[φ1rφ2rφNr]
由此可见,频响函数的任意一行包含了所有的模态参数,而该行的r阶模态频响函数之比,即为第r阶模态振型。因此,我们可以在结构上的某一点布置拾振器,轮流的激励所有点,即可求得 [ H ] [H] [H]中的一行。
在这里插入图片描述

2.2 频响函数的一列

频响函数矩阵任意一列的表达式为:
{ H 1 j H 2 j ⋮ H N j } = ∑ r = 1 N φ j r k r − ω 2 m r + j ω c r { φ 1 r φ 2 r ⋮ φ N r } \left\{\begin{array}{c} H_{1 j} \\ H_{2 j} \\ \vdots \\ H_{N j} \end{array}\right\}=\sum_{r=1}^{N} \frac{\varphi_{j r}}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}}\left\{\begin{array}{c} \varphi_{1 r} \\ \varphi_{2 r} \\ \vdots \\ \varphi_{\mathrm{N} r} \end{array}\right\} H1jH2jHNj =r=1Nkrω2mr+jωcrφjr φ1rφ2rφNr
由此可见,频响函数的任意一列包含了所有的模态参数,而该列的r阶模态频响函数之比,即为第r阶模态振型。因此,我们可以在结构上的某一点布置激振器,而在其他各点布置拾振器,即可求得 [ H ] [H] [H]中的一列。
在这里插入图片描述由频响函数的表达式可知,频响函数的图像可看做是一系列单自由度系统的导纳曲线的叠加。

3. 频响函数的图像

频响函数的表达式还可以写为:
H i j = ∑ r = 1 N 1 k r − ω 2 m r + j ω c r φ i r φ j r = ∑ r = 1 N Y r φ i r φ j r = ∑ r = 1 N H i j H_{i j}=\sum_{r=1}^{N} \frac{1}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}} \varphi_{i r} \varphi_{j r}=\sum_{r=1}^{N} Y_{r} \varphi_{i r} \varphi_{j r}=\sum_{r=1}^{N} H_{i j} Hij=r=1Nkrω2mr+jωcr1φirφjr=r=1NYrφirφjr=r=1NHij

3.1 幅频曲线与相频曲线

由上式可知:频响函数可以看做是一系列单自由度系统导纳曲线的叠加,第 r r r阶模态所做的贡献 r H i j { }_{r} H_{i j} rHij为:
r H i j = Y r φ i r φ j r = 1 k r − ω 2 m r + j ω c r φ i r φ j r { }_{r} H_{i j}=Y_{r} \varphi_{i r} \varphi_{j r}=\frac{1}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}} \varphi_{i r} \varphi_{j r} rHij=Yrφirφjr=krω2mr+jωcr1φirφjr

3.2 实频曲线与虚频曲线

频响函数还可以用实部、虚部的形式表达:
H i j = R i j + j I i j = ∑ r = 1 N ( R r + j r I i j ) = ∑ r = 1 N φ i r φ j r ( r R + j r I ) H_{i j}=R_{i j}+\mathrm{j} I_{i j}=\sum_{r=1}^{N}\left(R_{r}+\mathrm{j}_{r} I_{i j}\right)=\sum_{r=1}^{N} \varphi_{i r} \varphi_{j r}\left({ }_{r} R+j_{r} I\right) Hij=Rij+jIij=r=1N(Rr+jrIij)=r=1Nφirφjr(rR+jrI)
其中:
r R = 1 − λ r 2 k r [ ( 1 − λ r ) 2 + ( 2 ζ r λ r ) 2 ] , r I = − 2 ζ r λ r k r [ ( 1 − λ r 2 ) 2 + ( 2 ζ r λ r ) 2 ] { }_{r} R=\frac{1-\lambda_{r}^{2}}{k_{r}\left[\left(1-\lambda_{r}\right)^{2}+\left(2 \zeta_{r} \lambda_{r}\right)^{2}\right]}, \quad{ }_{r} I=\frac{-2 \zeta_{r} \lambda_{r}}{k_{r}\left[\left(1-\lambda_{r}^{2}\right)^{2}+\left(2 \zeta_{r} \lambda_{r}\right)^{2}\right]} rR=kr[(1λr)2+(2ζrλr)2]1λr2,rI=kr[(1λr2)2+(2ζrλr)2]2ζrλr

  • 在阻尼不大的前提下,虚频曲线的峰值对应系统的固有频率 Ω r \Omega_{r} Ωr,根据实频曲线的峰值所对应的频率 ω a \omega_a ωa ω b \omega_b ωb,可以计算阻尼系数 ζ \zeta ζ
  • 根据虚频曲线在 ω \omega ω轴两边的分布情况,可以确定有无反共振点。

3.3 频响函数向量的矢端轨迹图

频响函数的实部与虚部具有以下关系:
r R i j 2 + ( r I i j + φ i r φ j r 4 k r ζ r λ r ) 2 = ( φ i r φ j r 4 k r ζ r λ r ) 2 { }_{r} R_{i j}^{2}+\left({ }_{r} I_{i j}+\frac{\varphi_{i r} \varphi_{j r}}{4 k_{r} \zeta_{r} \lambda_{r}}\right)^{2}=\left(\frac{\varphi_{i r} \varphi_{j r}}{4 k_{r} \zeta_{r} \lambda_{r}}\right)^{2} rRij2+(rIij+4krζrλrφirφjr)2=(4krζrλrφirφjr)2
上式表明,在小阻尼、模态不是很密集的条件下, H i j H_{ij} Hij的矢端轨迹图由各模态分量的导纳圆集合而成。
在这里插入图片描述
观察上图,我们可以发现:

  • 凡是虚频曲线处于 ω \omega ω轴下部的图像,其矢端轨迹图也在实轴的下部;凡是虚频曲线处于 ω \omega ω轴上部的图像,其矢端轨迹图也在实轴的上部;

4. 频响函数的留数表示法

频响函数的留数表示法可通过对单自由系统的动力学方程进行拉普拉斯变换得到,单自由系统动力学方程在 s s s域的表达式为:
H ( s ) = 1 m s 2 + c s + k H(s)=\frac{1}{m s^{2}+c s+k} H(s)=ms2+cs+k1
分解可得:
H ( s ) = 1 m ( s − s 1 ) ( s − s 1 ∗ ) = r 1 ( s − s 1 ) + r 1 ∗ ( s − s 1 ∗ ) H(s)=\frac{1}{m\left(s-s_{1}\right)\left(s-s_{1}^{*}\right)}=\frac{r_{1}}{\left(s-s_{1}\right)}+\frac{r_{1}^{*}}{\left(s-s_{1}^{*}\right)} H(s)=m(ss1)(ss1)1=(ss1)r1+(ss1)r1
该方程的两个根为:
s 1 , s 1 ∗ = − c / 2 m ± ( c / 2 m ) 2 − k / m = − σ 1 ± j Ω 1 1 − ζ 1 2 s_{1}, s_{1}^{*}=-c / 2 m \pm \sqrt{(c / 2 m)^{2}-k / m}=-\sigma_{1} \pm \mathrm{j} \Omega_{1} \sqrt{1-\zeta_{1}^{2}} s1,s1=c/2m±(c/2m)2k/m =σ1±jΩ11ζ12
即:
s 1 = − σ 1 + j ν 1 , s 1 ∗ = − σ 1 − j ν 1 s_{1}=-\sigma_{1}+\mathrm{j} \nu_{1}, \quad s_{1}^{*}=-\sigma_{1}-\mathrm{j} \nu_{1} s1=σ1+jν1,s1=σ1jν1
并有:
Ω 1 2 = k / m = s 1 s 1 ∗ = σ 1 2 + ν 1 2 ν 1 = Ω 1 2 − σ 1 2 = Ω 1 1 − ζ 1 2 , ζ 1 = σ 1 / Ω 1 \begin{array}{l} \Omega_{1}^{2}=k / m=s_{1} s_{1}^{*}=\sigma_{1}^{2}+\nu_{1}^{2} \\ \nu_{1}=\sqrt{\Omega_{1}^{2}-\sigma_{1}^{2}}=\Omega_{1} \sqrt{1-\zeta_{1}^{2}}, \quad \zeta_{1}=\sigma_{1} / \Omega_{1} \end{array} Ω12=k/m=s1s1=σ12+ν12ν1=Ω12σ12 =Ω11ζ12 ,ζ1=σ1/Ω1
其中, s 1 s_1 s1 s 1 ∗ s_{1}^{*} s1称为极点 r r r以及 r 1 ∗ r_{1}^{*} r1称为留数。
r 1 = H ( s ) ( s − s 1 ∗ ) ∣ s = s 1 = 1 2 j m ν 1 , r 1 ∗ = H ( s ) ( s − s 1 ) ∣ s = s 1 ∗ = − 1 2 j m ν 1 r_{1}=\left.H(s)\left(s-s_{1}^{*}\right)\right|_{s=s_{1}}=\frac{1}{2\mathrm{j} m \nu_{1}}, \quad r_{1}^{*}=\left.H(s)\left(s-s_{1}\right)\right|_{s=s_{1}^{*}}=\frac{-1}{2\mathrm{j} m \nu_{1}} r1=H(s)(ss1)s=s1=2jmν11,r1=H(s)(ss1)s=s1=2jmν11
假如系统为多自由度系统,频响函数的留数表示法为:
H i j ( s ) = ∑ r = 1 N ( r A i j s − p r + r A i j ∗ s − p r ∗ ) H_{i j}(s)=\sum_{r=1}^{N}\left(\frac{{ }_{r} A_{i j}}{s-p_{r}}+\frac{{ }_{r} A_{i j}^{*}}{s-p_{r}^{*}}\right) Hij(s)=r=1N(sprrAij+sprrAij)
其中, r A i j , r A i j ∗ { }_{r} A_{i j},{ }_{r} A_{i j}^{*} rAij,rAij分别为第r阶极点对应的留数。表达式为:
r A i j = φ i r φ j r 2 j m r ν r , r A i j ∗ = − φ i r φ j r 2 j m r ν r { }_{r} A_{i j}=\frac{\varphi_{i r} \varphi_{j r}}{2 \mathrm{j} m_{r} \nu_{r}}, \quad{ }_{r} A_{i j}^{*}=-\frac{\varphi_{i r} \varphi_{j r}}{2 \mathrm{j} m_{r} \nu_{r}} rAij=2jmrνrφirφjr,rAij=2jmrνrφirφjr
如果系统的阻尼并非比例阻尼,频响函数也可以写成与振型有关的形式
H i j ( j ω ) = ∑ r = 1 N ( φ i r φ j r a r ( j ω − p r ) + φ i r ∗ φ j j ∗ ∗ a r ∗ ( j ω − p r ∗ ) ) H_{i j}(\mathrm{j} \omega)=\sum_{r=1}^{N}\left(\frac{\varphi_{i r} \varphi_{j r}}{a_{r}\left(\mathrm{j} \omega-p_{r}\right)}+\frac{\varphi_{i r}^{*} \varphi_{j{ }_{j}^{*}}^{*}}{a_{r}^{*}\left(\mathrm{j} \omega-p_{r}^{*}\right)}\right) Hij(jω)=r=1N(ar(jωpr)φirφjr+ar(jωpr)φirφjj)
只是, { φ r } \left\{\varphi_{r}\right\} {φr} { φ r ∗ } \left\{\varphi_{r}^{*}\right\} {φr}均为复振型,即其中的每一个元素都为复数, { a r } \left\{a_{r}\right\} {ar} { a r ∗ } \left\{a_{r}^{*}\right\} {ar}为一对共轭复数。

5. 模态试验准备及试验设计

模态试验的目的:测量系统的频响函数曲线,通过曲线拟合求取模态参数,在测量系统的模态信息时,我们只需要测量系统的某一行或者某一列即可。

  • 如果要测一列,可采用单点激励法,即在一点进行激励,轮流测量所有测点的响应(单输入单输出),或者同时测量所有点的响应(单输入多输出)。
  • 如果要测一行,可采用单点拾振法,即在一点测量响应,轮流激励所有测点(SISO法)。
  • 激振点的位置的选取十分重要,应当处于所测量的任何一阶模态的节点上,否则会遗留掉该阶模态。

5.1 试件支撑状态

在进行试件的模态试验时,除非能够模拟试件真实的约束状态,否则一般都只考虑自由状态下的试验。此时,试件具有六个刚体模态,刚体模态下系统的固有频率为0。自由支撑一般通过下列几个方式实现:

  • 软支撑
  • 较长的柔索吊起结构,可认为在水平方向处于自由状态,如果柔索刚度很低,也可认为结构在垂直方向处于自由状态。悬挂的比较好的情况是:结构的刚体运动模态比最低非刚体模态小得多,一般 ω o i / Ω 1 < 0.1 ∼ 0.2 \omega_{\mathrm{oi}} / \Omega_{1}<0.1 \sim 0.2 ωoi/Ω1<0.10.2。尽量使悬挂点靠近系统的节点。对于小阻尼结构,柔索可能引起附加阻尼。
  • 固结支撑:结构上的某一点或者若干点与地面连接

5.2 测点以及测量方法的选取

测量时要综合考虑测点位置、测点数量及测量方向,选取标准如下:

  • 确保明显捕捉到关心频率内结构的所有模态频率以及模态振型;
  • 保证关心点/关心方向在所选的测点内

5.3 测试系统的选择

一个平常的振动测试系统如下所示:
在这里插入图片描述
该系统一般由三部分组成:

  • 激励设备
  • 传感设备
  • 分析设备

5.4 激振设备的选取

激振设备通常分为两类,激振器与力锤

  • 激振器分为电动式激振器与电液式激振器,电动式激振器的工作频率较宽,但是电液式激振器的位移冲程更大。
  • 对于轻型与小阻尼结构,通常使用力锤作为激振设备。

5.5 激振器的支撑

  • 当激振器的外壳固连在刚性地面上时,激振器的固有频率远大于系统频率,适合激发频率较低的结构。
  • 激振器外壳通过软支撑接地,适合激发频率较高的结构。如果想要更近一步的降低激振器的固有频率,可以在外壳附加质量块。
  • 对于特大型结构,激振器一般通过软支撑与结构相连
  • 但是不能直接把激振器直接放在结构上

6. 模态试验常用的激励方法

6.1 步进式正弦激励

从最低频到最高频选定足够的频率离散值,一般来讲,在半功率点之内应当密集一些,在远离共振峰值点处,可以选取的稀疏一些。在正式试验之前,可以快速的进行一侧预试验,以优化离散点的位置,待正式试验时,每次调整频率后应当待系统响应达到稳定状态时,再测量响应。

6.2 自动正弦慢扫频激励

自动正弦慢扫频激励的方式是采用自动控制的方式,缓慢的使信号频率由低到高变化。在试验前也应当进行预试验,以确定合适的扫频速率,一般来讲,如果信号在某一速度下,由低到高的结果与由高到低的结果差别不大,就可以认为该速度是合适的。但是该方法无论速度多慢,都不可能测得系统在稳态下的响应。
在这里插入图片描述

一般来讲:

  • 对于线性扫频,其扫频速率: S max ⁡ < 216 f r 2 ζ r 2   H z / min ⁡ S_{\max }<216 f_{r}^{2} \zeta_{r}^{2} \mathrm{~Hz} / \min Smax<216fr2ζr2 Hz/min
  • 对于对数扫频,其扫频速率: S max ⁡ < 310 f r 2 ζ r 2  oct  / min ⁡ S_{\max }<310 f_{r}^{2} \zeta_{r}^{2} \text { oct } / \min Smax<310fr2ζr2 oct /min

6.3 冲击激励

冲击激励是一种瞬态激励,是最常用的一种激励方法,比较适用于中小型以及低阻尼结构的激励。

6.4 纯随机激励

理想随机函数是白噪声,其自相关函数为狄拉克函数,但是,真正的狄拉克函数是无法实现的,能实现的是在一定频率内具有高斯分布的平直谱的宽带随机信号,即以宽带噪声近似白噪声。在实际的测量中,为在有限的频带内集中激励能量,一般采用窄带噪声,窄带噪声的能量在有限范围内均匀分布。

  • 因为每次测量都不可能做到信号完全一致,所以泄露较大,为抑制泄露,激励和响应都应加汉宁窗,并且要多次平均。
  • 纯随机信号是由数字化随机信号发生器产生的。

6.5 伪随机激励

不同于纯随机激励,伪随机激励是计算机中产生的一个有限长的随机数列,并将其周而复始的循环输出,每一个循环即为一个周期T。

  • 为避免信号泄露,用矩形窗截取样本时,窗长 T w T_w Tw应该等于循环周期 T T T的整数倍,即: T w = n T T_w=nT Tw=nT

6.6 周期随机激励

周期随机函数是由多段互不相关的随机函数组成,一个典型的周期随机函数的函数图像如下所示:
在这里插入图片描述
在A阶段,前两个周期用来对系统进行激励,第三个周期系统响应稳定,此时进行测量,后面的B阶段和C阶段均是如此。

6.7 瞬态随机激励

7. 频域模态参数识别——单模态识别法

单模态识别法适用于各阶模态频率较为分散的情况。

7.1 实模态情况

实模态的单模态识别法是以下式作为依据的:
r H i j ( ω ) = φ i r φ j r m r ν r 2 j [ σ r + j ( ω − ν r ) ] − φ i r φ j m r ν r 2 j [ σ r + j ( ω + ν r ) ] { }_{r} H_{i j}(\omega)=\frac{\frac{\varphi_{i r} \varphi_{j r}}{m_{r} \nu_{r}}}{2 \mathrm{j}\left[\sigma_{r}+\mathrm{j}\left(\omega-\nu_{r}\right)\right]}-\frac{\frac{\varphi_{i r} \varphi_{j}}{m_{r} \nu_{r}}}{2 \mathrm{j}\left[\sigma_{r}+\mathrm{j}\left(\omega+\nu_{r}\right)\right]} rHij(ω)=2j[σr+j(ωνr)]mrνrφirφjr2j[σr+j(ω+νr)]mrνrφirφj
但是在分析时,通常只取等号右边的第一项分析
r H = 1 2 1 σ r 2 + ( ν r − ω ) 2 e j α r = Re ⁡ ( r H ) + j Im ⁡ ( r H ) = r R ( ν r − ω ) 2 [ σ r 2 + ( ν r − ω ) 2 ] − j r R σ r 2 [ σ r 2 + ( ν r − ω ) 2 ] α r = − arctan ⁡ ( σ r ν r − ω ) \begin{aligned} { }_{r}H & =\frac{1}{2} \frac{1}{\sqrt{\sigma_{r}^{2}+\left(\nu_{r}-\omega\right)^{2}}} \mathrm{e}^{\mathrm{j} \alpha_{r}}=\operatorname{Re}\left({ }_{r} H\right)+\mathrm{j} \operatorname{Im}\left(_{r} H\right) \\ & =\frac{{ }_{r} R\left(\nu_{r}-\omega\right)}{2\left[\sigma_{r}^{2}+\left(\nu_{r}-\omega\right)^{2}\right]}-\mathrm{j} \frac{{ }_{r} R \sigma_{r}}{2\left[\sigma_{r}^{2}+\left(\nu_{r}-\omega\right)^{2}\right]} \\ \alpha_{r} & =-\arctan \left(\frac{\sigma_{r}}{\nu_{r}-\omega}\right) \end{aligned} rHαr=21σr2+(νrω)2 1ejαr=Re(rH)+jIm(rH)=2[σr2+(νrω)2]rR(νrω)j2[σr2+(νrω)2]rRσr=arctan(νrωσr)
识别步骤如下:

  • step1:确定 ν r \nu_{r} νr σ r \sigma_{r} σr
    虚频曲线的峰值所对应的频率即为 ν r \nu_{r} νr σ r \sigma_{r} σr的计算式为:
    σ r = ω 2 − ω 1 2 \sigma_{r}=\frac{\omega_{2}-\omega_{1}}{2} σr=2ω2ω1
    ω 2 , ω 1 \omega_{2},\omega_{1} ω2,ω1为实频曲线的峰值频率。
    在这里插入图片描述
  • step2:确定留数
    方法一:留数确定法:已经证明虚频曲线在峰值处具有如下关系式:
    Im ⁡ ( r H ) ∣ ω = ν r = − r R 2 σ r \left.\operatorname{Im}\left({ }_{r} H\right)\right|_{\omega=\nu_{r}}=-\frac{{ }_{r} R}{2 \sigma_{r}} Im(rH)ω=νr=2σrrR
    利用该关系式,可以计算得到留数。
    方法二:导纳圆拟合法:导纳圆拟合法有些许的复杂,这里不做赘述。

7.2 复模态情况

复模态的振型元素为复数,所以复模态的频响函数公式为:
r H i j ( ω ) = r U i j + j r V i j 2 j [ σ r + j ( ω − ν r ) ] − r U i j − j r V i j 2 j [ σ r + j ( ω + ν r ) ] { }_{r} H_{i j}(\omega)=\frac{{ }_{r} U_{i j}+\mathrm{j}_{r} V_{i j}}{2 \mathrm{j}\left[\sigma_{r}+\mathrm{j}\left(\omega-\nu_{r}\right)\right]}-\frac{{ }_{r} U_{i j}-\mathrm{j}_{r} V_{i j}}{2 \mathrm{j}\left[\sigma_{r}+\mathrm{j}\left(\omega+\nu_{r}\right)\right]} rHij(ω)=2j[σr+j(ωνr)]rUij+jrVij2j[σr+j(ω+νr)]rUijjrVij
与实模态情况不同的是,复模态情况下的实频、虚频曲线特性发生了很大差别,例如:虚频曲线峰值已不再对应 ν r \nu_{r} νr;实频曲线的正负峰值也不再与半功率点的频率相对应。
因此,复模态情况下的单模态识别方法步骤为:

  • step1:利用幅频曲线确定 ν r \nu_{r} νr σ r \sigma_{r} σr,曲线峰值对应频率即为 ν r \nu_{r} νr。利用半功率点求得 σ r \sigma_{r} σr
    σ r = ω b − ω a 2 \sigma_{r}=\frac{\omega_{b}-\omega_{a}}{2} σr=2ωbωa
    在这里插入图片描述
    step2:确定留数
    与实模态情况一致,复模态留数确定的方法也有两种,一是实虚频曲线,二是导纳圆法。
    方法1:实虚频曲线法:在确定了 ν r \nu_{r} νr σ r \sigma_{r} σr之后,就可以在实虚频曲线上找到对应的点,根据:
    Re ⁡ [ r H ( ν r ) ] = − r V 2 σ r , Im ⁡ [ r H ( ν r ) ] = − r U 2 σ r \operatorname{Re}\left[{ }_{r} H\left(\nu_{r}\right)\right]=-\frac{{ }_{r} V}{2 \sigma_{r}}, \quad \operatorname{Im}\left[{ }_{r} H\left(\nu_{r}\right)\right]=-\frac{{ }_{r} U}{2 \sigma_{r}} Re[rH(νr)]=2σrrV,Im[rH(νr)]=2σrrU
    可以求得 r V , r U { }_{r} V,{ }_{r} U rV,rU,再根据:
    r R e j α r = r U + j r V , tan ⁡ α r = r V r U { }_{r} R \mathrm{e}^{\mathrm{j} \alpha_{r}}={ }_{r} U+\mathrm{j}_{r} V, \quad \tan \alpha_{r}=\frac{{ }_{r} V}{{ }_{r} U} rRejαr=rU+jrV,tanαr=rUrV
    方法二:导纳圆拟合法:导纳圆拟合法较为复杂,这里不多赘述,有兴趣的读者可以自己找书看看。

7.3. 模态振型标准化

模态振型与留数之间的关系为:
r R i j = φ i r φ j r m r ν r r R j j = φ j r φ j r m r ν r \begin{array}{l} { }_{r} R_{i j}=\frac{\varphi_{i r} \varphi_{j r}}{m_{r} \nu_{r}} \\ { }_{r} R_{j j}=\frac{\varphi_{j r} \varphi_{j r}}{m_{r} \nu_{r}} \end{array} rRij=mrνrφirφjrrRjj=mrνrφjrφjr
观察上式可以发现, r R j j { }_{r} R_{j j} rRjj是一个确定的数,而 φ j r \varphi_{j r} φjr m r m_{r} mr都是不确定的数,因此只要确定二者之一,另一个也就随之确定。这种对模态振型取值的方法叫做模态振型的标准化。常用的标准化方法为以下四中:

  • 1.以激励点作为参考点,该点的振型元素取位1。标准化的振型为:
    [ φ 1 r φ 2 r ⋮ φ N r ] = 1 β r φ j r [ r R 1 j r R 2 j ⋮ r R N j ] = 1 r j j [ r R 1 j r R 2 j ⋮ r R N j ] \left[\begin{array}{c} \varphi_{1 r} \\ \varphi_{2 r} \\ \vdots \\ \varphi_{N r} \end{array}\right]=\frac{1}{\beta_{r} \varphi_{j r}}\left[\begin{array}{c} { }_{r} R_{1 j} \\ { }_{r} R_{2 j} \\ \vdots \\ { }_{r} R_{N_{j}} \end{array}\right]=\frac{1}{{ }_{r}{ }_{j j}}\left[\begin{array}{c} { }_{r} R_{1 j} \\ { }_{r} R_{2 j} \\ \vdots \\ { }_{r} R_{N j} \end{array}\right] φ1rφ2rφNr =βrφjr1 rR1jrR2jrRNj =rjj1 rR1jrR2jrRNj 模态质量的计算方法为:
    m r = 1 β r ν r = 1 r R j j ν r m_{r}=\frac{1}{\beta_{r} \nu_{r}}=\frac{1}{{ }_{r} R_{j j} \nu_{r}} mr=βrνr1=rRjjνr1
  • 2.以 m r = { φ r } T [ M ] { φ r } = 1 m_{r}=\left\{\varphi_{r}\right\}^{\mathrm{T}}[M]\left\{\varphi_{r}\right\}=1 mr={φr}T[M]{φr}=1作为标准化原则,则标准化振型为:
    [ φ 1 r φ 2 r ⋮ φ N r ] = 1 β r φ j r [ r R 1 j r R 2 j ⋮ r R N j ] = ν r r R j j [ r R 1 j r R 2 j ⋮ r R N j ] \left[\begin{array}{c} \varphi_{1 r} \\ \varphi_{2 r} \\ \vdots \\ \varphi_{N r} \end{array}\right]=\frac{1}{\beta_{r} \varphi_{j r}}\left[\begin{array}{c} { }_{r} R_{1 j} \\ { }_{r} R_{2 j} \\ \vdots \\ { }_{r} R_{N j} \end{array}\right]=\sqrt{\frac{\nu_{r}}{{ }_{r} R_{j j}}}\left[\begin{array}{c} { }_{r} R_{1 j} \\ { }_{r} R_{2 j} \\ \vdots \\ { }_{r} R_{N_{j}} \end{array}\right] φ1rφ2rφNr =βrφjr1 rR1jrR2jrRNj =rRjjνr rR1jrR2jrRNj
  • 3.以 ∑ i = 1 N φ i r 2 = 1 \sum_{i=1}^{N} \varphi_{i r}^{2}=1 i=1Nφir2=1作为模态振型标准化的原则,则振型向量为:
    [ φ 1 r φ 2 r ⋮ φ N r ] = 1 ∑ i = 1 N r R i j 2 [ R 1 j r R 2 j ⋮ R N j ] \left[\begin{array}{c} \varphi_{1 r} \\ \varphi_{2 r} \\ \vdots \\ \varphi_{N r} \end{array}\right]=\frac{1}{\sqrt{\sum_{i=1}^{N}{ }_{r} R_{i j}^{2}}}\left[\begin{array}{c} R_{1 j} \\ { }_{r} R_{2 j} \\ \vdots \\ R_{N j} \end{array}\right] φ1rφ2rφNr =i=1NrRij2 1 R1jrR2jRNj
    模态质量为:
    m r = 1 β r ν r = r R j j ν r ∑ i = 1 N r R i j 2 m_{r}=\frac{1}{\beta_{r} \nu_{r}}=\frac{{ }_{r} R_{j j}}{\nu_{r} \sum_{i=1}^{N}{ }_{r} R_{i j}^{2}} mr=βrνr1=νri=1NrRij2rRjj
  • 4.模态振型向量中最大元素取值为1,模态振型的表达式为:
    [ φ 1 r φ 2 r ⋮ φ N r ] = 1 r R s j [ r R 1 j r R 2 j ⋮ r N j ] \left[\begin{array}{c} \varphi_{1 r} \\ \varphi_{2 r} \\ \vdots \\ \varphi_{N r} \end{array}\right]=\frac{1}{{ }_{r} R_{s j}}\left[\begin{array}{c} { }_{r} R_{1 j} \\ { }_{r} R_{2 j} \\ \vdots \\ { }_{r}{ }_{N j} \end{array}\right] φ1rφ2rφNr =rRsj1 rR1jrR2jrNj
    模态质量为:
    m r = r R j j r R s j 2 ν r m_{r}=\frac{{ }_{r} R_{j j}}{{ }_{r} R_{s j}^{2} \nu_{r}} mr=rRsj2νrrRjj
    求得模态质量后,便可以计算得到模态刚度和模态阻尼参数:
    k r = m r Ω r 2 = m r ( σ r 2 + ν r 2 ) , c r = 2 σ r m r k_{r}=m_{r} \Omega_{r}^{2}=m_{r}\left(\sigma_{r}^{2}+\nu_{r}^{2}\right), c_{r}=2 \sigma_{r} m_{r} kr=mrΩr2=mr(σr2+νr2),cr=2σrmr
    由上述步骤可以发现,在单模态识别法中,只有 ν r \nu_{r} νr σ r \sigma_{r} σr是确定的,其他的参数,诸如模态质量 m r m_{r} mr,模态刚度 k r k_{r} kr,模态阻尼 c r c_{r} cr,模态振型等都随着标准化方法的不同而变化。

7.4 一点补充

另外,相对于单模态识别法,还有多模态识别法,多模态识别法适用于某一频段内模态较为密集,或者系统阻尼较大的情况,多模态识别方法也有不少参考著作,这里不多赘述
在这里插入图片描述

8. 应变模态分析以及参数识别

相较于位移模态,采用应变模态至少具有两个方面的好处

  • 第一,可以免去从位移到应变计算过程中带来的误差;
  • 第二,可以直接测量某些关键点的应变,如应力集中问题,局部结构变动对变动区附近的影响问题。
    从模态叠加的角度出发,系统的应变可以写为:
    u = ∑ r = 1 m q r Φ r ( x ) ∂ ε x = ∂ u ∂ x = ∂ ∂ x ∑ r = 1 m q r Φ r ( x ) = ∑ r = 1 m q r ∂ Φ r ( x ) ∂ x = ∑ r = 1 m q r ψ r ε ( x ) \begin{array}{l} u=\sum_{r=1}^{m} q_{r} \Phi_{r}(x) \\ \partial \varepsilon_{x}=\frac{\partial u}{\partial x}=\frac{\partial}{\partial x} \sum_{r=1}^{m} q_{r} \Phi_{r}(x)=\sum_{r=1}^{m} q_{r} \frac{\partial \Phi_{r}(x)}{\partial x}=\sum_{r=1}^{m} q_{r} \psi_{r}^{\varepsilon}(x) \end{array} u=r=1mqrΦr(x)εx=xu=xr=1mqrΦr(x)=r=1mqrxΦr(x)=r=1mqrψrε(x)
    此处令 ψ r ϵ ( x ) = ∂ ∂ x Φ r ( x ) \psi_{r}^{\epsilon}(x)=\frac{\partial}{\partial x} \Phi_{r}(x) ψrϵ(x)=xΦr(x),称为应变模态。根据弹性力学理论,一点处存在三个正应变和六个剪应变。但是因为应变计只能用来测量正应变,因此:
    [ { ε x } { ε y } { ε z } ] = ∑ r = 1 m q r [ ∂ ∂ x { φ r u } ∂ ∂ y { φ r ν } ∂ ∂ z { φ r w } ] = ∑ r = 1 m q r [ { ψ r ε x } { ψ r ε y } { ψ r ε z } ] \left[\begin{array}{l} \left\{\varepsilon_{x}\right\} \\ \left\{\varepsilon_{y}\right\} \\ \left\{\varepsilon_{z}\right\} \end{array}\right]=\sum_{r=1}^{m} q_{r}\left[\begin{array}{l} \frac{\partial}{\partial x}\left\{\varphi_{r}^{u}\right\} \\ \frac{\partial}{\partial y}\left\{\varphi_{r}^{\nu}\right\} \\ \frac{\partial}{\partial z}\left\{\varphi_{r}^{w}\right\} \end{array}\right]=\sum_{r=1}^{m} q_{r}\left[\begin{array}{c} \left\{\psi_{r}^{\varepsilon_{x}}\right\} \\ \left\{\psi_{r}^{\varepsilon_{y}}\right\} \\ \left\{\psi_{r}^{\varepsilon_{z}}\right\} \end{array}\right] {εx}{εy}{εz} =r=1mqr x{φru}y{φrν}z{φrw} =r=1mqr {ψrεx}{ψrεy}{ψrεz}

8.1应变频响矩阵

应变频响矩阵可以写为:
[ H ϵ ] = ∑ r = 1 M Y r [ ψ 1 r ε { φ r } T ψ 2 r ε { φ r } T ⋮ ψ n r ε { φ r } T ] , Y r = 1 k r − ω 2 m r + j ω c r \left[H^{\epsilon}\right]=\sum_{r=1}^{M} Y_{r}\left[\begin{array}{c} \psi_{1 r}^{\varepsilon}\left\{\varphi_{r}\right\}^{\mathrm{T}} \\ \psi_{2 r}^{\varepsilon}\left\{\varphi_{r}\right\}^{\mathrm{T}} \\ \vdots \\ \psi_{n r}^{\varepsilon}\left\{\varphi_{r}\right\}^{\mathrm{T}} \end{array}\right], \quad Y_{r}=\frac{1}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}} [Hϵ]=r=1MYr ψ1rε{φr}Tψ2rε{φr}Tψnrε{φr}T ,Yr=krω2mr+jωcr1
应变频响函数则为:
H i j ε = ∑ r = 1 m ψ i r ε φ j r k r − ω 2 m r + j ω c r H_{i j}^{\varepsilon}=\sum_{r=1}^{m} \frac{\psi_{i r}^{\varepsilon} \varphi_{j r}}{k_{r}-\omega^{2} m_{r}+\mathrm{j} \omega c_{r}} Hijε=r=1mkrω2mr+jωcrψirεφjr
应变响应矩阵具有下列性质:

  • H i j ε ≠ H j i ε H_{i j}^{\varepsilon} \neq H_{j i}^{\varepsilon} Hijε=Hjiε,因此应变响应矩阵是非对称矩阵
  • 矩阵的任意一元素均含有 k r k_r kr m r m_r mr c r c_r cr的信息
  • 矩阵的任一行含有 { φ r } \left\{\varphi_{r}\right\} {φr}的全部信息,而矩阵的任意一列含有 { ψ r ε } \left\{\psi_{r}^{\varepsilon}\right\} {ψrε}的全部信息,因此要测量应变模态,同时要测量位移频响矩阵的一行和一列。这样看,虽然计算量增加了一倍,但是同时也可以得到系统的位移模态。

8.2 应变模态试验方法与参数识别

应变模态试验方法是基于以下公式得到的:
[ H ε ] = ∑ r = 1 m [ [ R r ϵ ] 2 j ( s − s r ) − [ R r e ∗ ] 2 j ( s − s r ∗ ) ] [ R k ϵ ] = { ψ k ε } { φ k } T m k ν k \begin{array}{l} {\left[H^{\varepsilon}\right]=\sum_{r=1}^{m}\left[\frac{\left[R_{r}^{\epsilon}\right]}{2 \mathrm{j}\left(s-s_{r}\right)}-\frac{\left[R_{r}^{e^{*}}\right]}{2 \mathrm{j}\left(s-s_{r}^{*}\right)}\right]} \\ {\left[R_{k}^{\epsilon}\right]=\frac{\left\{\psi_{k}^{\varepsilon}\right\}\left\{\varphi_{k}\right\}^{\mathrm{T}}}{m_{k} \nu_{k}}} \end{array} [Hε]=r=1m[2j(ssr)[Rrϵ]2j(ssr)[Rre]][Rkϵ]=mkνk{ψkε}{φk}T
式中, s k = − σ k + j ν k , ν k = Ω k 1 − ζ k s_{k}=-\sigma_{k}+j \nu_{k}, \nu_{k}=\Omega_{k} \sqrt{1-\zeta_{k}} sk=σk+jνk,νk=Ωk1ζk
试验方法的一般步骤如下:

  • step1:先对结构进行位移模态分析,并得到模态参数
  • step2:在一个选好的点进行激励,在其他点处测量应变,得到矩阵 [ H ε ] \left[H^{\varepsilon}\right] [Hε]的一列 N N N条曲线,如果在每一点贴3个应变片,则为 3 N 3N 3N条曲线。
  • step3:曲线拟合的依据为:
    { H 1 t ε H 2 t ε ⋮ H t t ε ⋮ H N t ε } = ∑ r = 1 m 1 2 j ( j ω − s r ) { r R 1 t ϵ r R 2 t ε ⋮ r R t t ϵ ⋮ r R N t ϵ } − ∑ r = 1 m 1 2 j ( j ω − s r ∗ ) { r R 1 t ϵ r R 2 t ε ⋮ r R t t ϵ ⋮ r R N t ϵ } \left\{\begin{array}{c} H_{1 t}^{\varepsilon} \\ H_{2 t}^{\varepsilon} \\ \vdots \\ H_{t t}^{\varepsilon} \\ \vdots \\ H_{\mathrm{N} t}^{\varepsilon} \end{array}\right\}=\sum_{r=1}^{m} \frac{1}{2 \mathrm{j}\left(\mathrm{j} \omega-s_{r}\right)}\left\{\begin{array}{c} { }_{r} R_{1 t}^{\epsilon} \\ { }_{r} R_{2 t}^{\varepsilon} \\ \vdots \\ { }_{r} R_{t t}^{\epsilon} \\ \vdots \\ { }_{r} R_{N t}^{\epsilon} \end{array}\right\}-\sum_{r=1}^{m} \frac{1}{2 \mathrm{j}\left(\mathrm{j} \omega-s_{r}^{*}\right)}\left\{\begin{array}{c} { }_{r} R_{1 t}^{\epsilon} \\ { }_{r} R_{2 t}^{\varepsilon} \\ \vdots \\ { }_{r} R_{t t}^{\epsilon} \\ \vdots \\ { }_{r} R_{N t}^{\epsilon} \end{array}\right\} H1tεH2tεHttεHNtε =r=1m2j(jωsr)1 rR1tϵrR2tεrRttϵrRNtϵ r=1m2j(jωsr)1 rR1tϵrR2tεrRttϵrRNtϵ
    其中, r R i t ϵ = ψ i r ϵ φ t r / ( m r ν r ) { }_{r} R_{i t}^{\epsilon}=\psi_{i r}^{\epsilon} \varphi_{t r} /\left(m_{r} \nu_{r}\right) rRitϵ=ψirϵφtr/(mrνr),所以计算得到留数矩阵后,就可以根据下式求取模态振型。
    { ψ r ε } = ( m r ν r / φ t r ) [ R r ϵ 1 t r R 2 t ϵ ⋯ r R t t ϵ ⋯ r R N t ] T \left\{\psi_{r}^{\varepsilon}\right\}=\left(m_{r} \nu_{r} / \varphi_{t r}\right)\left[\begin{array}{llllll} R_{r} \epsilon_{1 t} & { }_{r} R_{2 t}^{\epsilon} & \cdots & { }_{r} R_{t t}^{\epsilon} & \cdots & { }_{r} R_{N_{t}} \end{array}\right]^{\mathrm{T}} {ψrε}=(mrνr/φtr)[Rrϵ1trR2tϵrRttϵrRNt]T
  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值