傅里叶变换、相关函数、功率谱密度与频响估计方法

1. 傅里叶变换、相关函数与功率谱密度

输入信号:
x ( t ) = ∫ − ∞ + ∞ S x ( f ) e j 2 π f t d f S x ( f ) = ∫ − ∞ + ∞ x ( t ) e − j 2 π f t d t \begin{array}{l} x(t)=\int_{-\infty}^{+\infty} S_{x}(f) e^{j 2 \pi f t} d f \\ S_{x}(f)=\int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} d t \end{array} x(t)=+Sx(f)ej2πftdfSx(f)=+x(t)ej2πftdt
输出信号:
y ( t ) = ∫ − ∞ + ∞ S y ( f ) e j 2 π f t d f S y ( f ) = ∫ − ∞ + ∞ y ( t ) e − j 2 π f t d t \begin{array}{l} y(t)=\int_{-\infty}^{+\infty} S_{y}(f) e^{j 2 \pi f t} d f \\ S_{y}(f)=\int_{-\infty}^{+\infty} y(t) e^{-j 2 \pi f t} d t \end{array} y(t)=+Sy(f)ej2πftdfSy(f)=+y(t)ej2πftdt
冲击响应:
h ( t ) = ∫ − ∞ + ∞ H ( f ) e j 2 π f t d f H ( f ) = ∫ − ∞ + ∞ h ( t ) e − j 2 π f t d t \begin{array}{l} h(t)=\int_{-\infty}^{+\infty} H(f) e^{j 2 \pi f t} d f \\ H(f)=\int_{-\infty}^{+\infty} h(t) e^{-j 2 \pi f t} d t \end{array} h(t)=+H(f)ej2πftdfH(f)=+h(t)ej2πftdt
输入信号自相关函数与自功率谱:
R x x ( τ ) = lim ⁡ T → ∞ 1 T ∫ T x ( t ) x ( t + τ ) d t G x x ( f ) = ∫ − ∞ + ∞ R x x ( τ ) e − j 2 π f d τ = S x ( f ) ⋅ S x ∗ ( f ) \begin{array}{c} R_{x x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} x(t) x(t+\tau) d t \\ G_{x x}(f)=\int_{-\infty}^{+\infty} R_{x x}(\tau) e^{-j 2 \pi f} d \tau=S_{x}(f) \cdot S_{x}^{*}(f) \end{array} Rxx(τ)=limTT1Tx(t)x(t+τ)dtGxx(f)=+Rxx(τ)ej2πfdτ=Sx(f)Sx(f)
输出信号自相关函数与自功率谱:
R y y ( τ ) = lim ⁡ T → ∞ 1 T ∫ T y ( t ) y ( t + τ ) d t G y y ( f ) = ∫ − ∞ + ∞ R y y ( τ ) e − j 2 π f t d τ = S y ( f ) ⋅ S y ∗ ( f ) \begin{array}{c} R_{y y}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} y(t) y(t+\tau) d t \\ G_{y y}(f)=\int_{-\infty}^{+\infty} R_{y y}(\tau) e^{-j 2 \pi f t} d \tau=S_{y}(f) \cdot S_{y}^{*}(f) \end{array} Ryy(τ)=limTT1Ty(t)y(t+τ)dtGyy(f)=+Ryy(τ)ej2πftdτ=Sy(f)Sy(f)
互相关函数与互功率谱:
R y x ( τ ) = lim ⁡ T → ∞ 1 T ∫ T y ( t ) x ( t + τ ) d t G y x ( f ) = ∫ − ∞ + ∞ R y x ( τ ) e − j 2 π f d τ = S y ( f ) ⋅ S x ∗ ( f ) \begin{array}{c} R_{y x}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{T} y(t) x(t+\tau) d t \\ G_{y x}(f)=\int_{-\infty}^{+\infty} R_{y x}(\tau) e^{-j 2 \pi f} d \tau=S_{y}(f) \cdot S_{x}^{*}(f) \end{array} Ryx(τ)=limTT1Ty(t)x(t+τ)dtGyx(f)=+Ryx(τ)ej2πfdτ=Sy(f)Sx(f)

2. 频响估计方法

由于信号采集过程中不可避免会受到噪声干扰,因此频响函数估计问题是在实际工程中必须要面对的问题。为了方便起见,信号统一采用频域方式来表达,令系统的输入信号为 F ( f ) F(f) F(f),输出信号为 X ( f ) X(f) X(f),输入信号噪声为 M ( f ) M(f) M(f),输出信号噪声为 N ( f ) N(f) N(f),实际输入信号为 Z ( f ) = F ( f ) + M ( f ) Z(f)=F(f)+M(f) Z(f)=F(f)+M(f),实际输出信号为 Y ( f ) + X ( f ) + N ( f ) Y(f)+X(f)+N(f) Y(f)+X(f)+N(f)

2.1 H 1 H_1 H1估计(输出含有噪声,输入没有)

H 1 = G y f G f f = Y ( f ) F ∗ ( f ) F ( f ) F ∗ ( f ) = ( X ( f ) + N ( f ) ) F ∗ ( f ) F ( f ) F ∗ ( f ) = X ( f ) F ∗ ( f ) + N ( f ) F ∗ ( f ) F ( f ) F ∗ ( f ) H_{1}=\frac{G_{\mathrm{yf}}}{G_{f f}}=\frac{Y(f) F^{*}(f)}{F(f) F^{*}(f)}=\frac{(X(f)+N(f)) F^{*}(f)}{F(f) F^{*}(f)}=\frac{X(f) F^{*}(f)+N(f) F^{*}(f)}{F(f) F^{*}(f)} H1=GffGyf=F(f)F(f)Y(f)F(f)=F(f)F(f)(X(f)+N(f))F(f)=F(f)F(f)X(f)F(f)+N(f)F(f)
因为输出噪声与输入无关,所以在经过多次平均后, H 1 = X ( f ) F ∗ ( f ) F ( f ) F ∗ ( f ) = X ( f ) F ( f ) = H 0 H_{1}=\frac{X(f) F^{*}(f)}{F(f) F^{*}(f)}=\frac{X(f)}{F(f)}=H_{0} H1=F(f)F(f)X(f)F(f)=F(f)X(f)=H0

2.2 H 2 H_2 H2估计(输入,输出含有噪声)

H 1 = G y z G z z = Y ( f ) Z ∗ ( f ) Z ( f ) Z ∗ ( f ) = ( X ( f ) + N ( f ) ) ( M ∗ ( f ) + F ∗ ( f ) ) ( M ( f ) + F ( f ) ) ( M ∗ ( f ) + F ∗ ( f ) ) = X ( f ) M ∗ ( f ) + X ( f ) F ∗ ( f ) + N ( f ) M ∗ ( f ) + N ( f ) F ∗ ( f ) M ( f ) M ∗ ( f ) + F ( f ) M ∗ ( f ) + M ( f ) F ∗ ( f ) + F ( f ) F ∗ ( f ) = G x m + G x f + G n m + G n f G m m + G f n n + G m f + G f f \begin{aligned} H_{1} & =\frac{G_{\mathrm{yz}}}{G_{z z}}=\frac{Y(f) Z^{*}(f)}{Z(f) Z^{*}(f)}=\frac{(X(f)+N(f))\left(M^{*}(f)+F^{*}(f)\right)}{(M(f)+F(f))\left(M^{*}(f)+F^{*}(f)\right)} \\ & =\frac{X(f) M^{*}(f)+X(f) F^{*}(f)+N(f) M^{*}(f)+N(f) F^{*}(f)}{M(f) M^{*}(f)+F(f) M^{*}(f)+M(f) F^{*}(f)+F(f) F^{*}(f)} \\ & =\frac{G_{x m}+G_{x f}+G_{n m}+G_{n f}}{G_{m m}+G_{f n n}+G_{m f}+G_{f f}} \end{aligned} H1=GzzGyz=Z(f)Z(f)Y(f)Z(f)=(M(f)+F(f))(M(f)+F(f))(X(f)+N(f))(M(f)+F(f))=M(f)M(f)+F(f)M(f)+M(f)F(f)+F(f)F(f)X(f)M(f)+X(f)F(f)+N(f)M(f)+N(f)F(f)=Gmm+Gfnn+Gmf+GffGxm+Gxf+Gnm+Gnf
因为输入与输出噪声无关,输出与输入噪声无关,所以在经过多次平均后, H 1 = G x f G m m + G f f = X ( f ) F ∗ ( f ) M ( f ) M ∗ ( f ) + F ( f ) F ∗ ( f ) = H 0 1 + G m m / G f f < H 0 H_{1}=\frac{G_{x f}}{G_{m m}+G_{f f}}=\frac{X(f) F^{*}(f)}{M(f) M^{*}(f)+F(f) F^{*}(f)}=\frac{H_{0}}{1+G_{m m} / G_{f f}}<H_{0} H1=Gmm+GffGxf=M(f)M(f)+F(f)F(f)X(f)F(f)=1+Gmm/GffH0<H0
由此可知,在这种情况下,无论经过多少次平均,频响函数的估计总是偏小的,除非激励远大于输入噪声,才可认为测量的频响为真实频响。
H 2 = G y y G z y H_{2}=\frac{G_{y y}}{G_{z y}} H2=GzyGyy,使用该频响函数有助于改善频响的近似性,并且 H 2 = G y y G z y = H 0 ( 1 + G m n G x x ) > H 0 H_{2}=\frac{G_{y y}}{G_{z y}}=H_{0}\left(1+\frac{G_{m n}}{G_{x x}}\right)>H_{0} H2=GzyGyy=H0(1+GxxGmn)>H0

2.3 相干

γ f y 2 = H 1 H 2 = 1 ( 1 + G m m / G f f ) ( 1 + G n n / G x x ) \gamma_{f y}^{2}=\frac{H_{1}}{H_{2}}=\frac{1}{\left(1+G_{m m} / G_{f f}\right)\left(1+G_{n n} / G_{x x}\right)} γfy2=H2H1=(1+Gmm/Gff)(1+Gnn/Gxx)1
G m m ≪ 0 , G n n ≪ 0 G_{mm} \ll 0 , G_{n n} \ll 0 Gmm0,Gnn0时,相干近似为1,因此相干是衡量一次测试质量是否好(噪声的影响较低)的重要指标。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值