Pandas提取指定行列

取列

1.通过列名称来提取指定列(推荐)

#列名:irline_sentiment_gold   name    negativereason_gold retweet_count   text    
get_data=data[['airline_sentiment','text']]

2.通过loc函数传入列名称来获取列
loc : location 指定列名的位置

data.loc[:,'text']  #获取列名为text的那一列

3.通过iloc函数传入默认索引切片获取列
iloc : integer-location 整数位置,也就是索引方式来获取所需要的列

df.iloc[:,0]  #获取第一列

取行

1.通过索引切片取(推荐)

data[0:3]  #取索引0,1,2行

2.通过loc函数默认索引值来取(不推荐)

data.loc[0:3]  #取索引 0,1,2,3行

注意区别,行列索引,以及默认pandas给的索引值。如下图,我们数据存储本身起始列是tweet_id,但是pandas读取后会默认给一个递增的索引id,这个就是索引值。通过loc就是通过值来切。
在这里插入图片描述

总结

iloc带i的可以理解通过行或者列本身的索引顺序(从0开始,0表示第一行或者第一列)来确定位置。
loc可以理解通过默认pandas索引值来确定位置,仅在获取行时使用。0:3表示默认索引值0-3行。

  • 13
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
回答: 在使用pandas指定列行进行切片时,可以使用以下方法。首先,可以使用读取整个文件后进行切片处理的方法。通过使用`df.iloc`来取出特定行或列。例如,使用`df.iloc\[0\]`可以获取第一行的数据,使用`df.iloc\[:3\]`可以获取前三行的数据,使用`df.iloc\[:, 0\]`可以获取第一列的数据,使用`df.iloc\[:, :2\]`可以获取前两列的数据。此外,还可以使用`df\[3:10\]`来获取第四行到第十行的数据,使用`df\["列的名字"\]`来直接查看某一列的值。这些操作类似于对列表进行切片操作。\[1\] 另外,还可以使用不读取整个文件,而是读取特定行和列的方法。当遇到文件太大时,可以直接读取所需的指定行和列。使用`pd.read_csv`函数的`nrows`参数可以指定读取的行数,例如`pd.read_csv("路径\文件名称", nrows=15)`可以只读取前十五行。使用`pd.read_csv`函数的`skiprows`参数可以指定需要忽略的行数,例如`pd.read_csv("路径\文件名称", skiprows=9, nrows=5)`可以忽略前九行,然后读取接下来的五行。对于列的选择,可以使用`usecols`参数来指定要读取的列,例如`pd.read_csv("1217_1out.csv", usecols=\[0\])`可以只读取第一列的数据。\[1\] 需要注意的是,使用`.loc`、`.iloc`、`.ix`等方法时,只提供一个参数时,进行的是行选择。而使用`.loc`、`.at`方法选择列时,只能使用列名,不能使用位置。而使用`.iloc`、`.iat`方法选择列时,只能使用位置,不能使用列名。另外,使用`df\[\]`只能进行行选择或列选择,不能同时进行列选择,列选择只能使用列名。\[2\] 最后,需要注意行列索引以及默认的索引值。在pandas中,数据存储本身可能有起始列,但是pandas读取后会默认给一个递增的索引值。通过使用`.loc`方法可以通过值来进行切片操作。\[3\] #### 引用[.reference_title] - *1* [pandas读取指定行/列的几种操作](https://blog.csdn.net/bianxia123456/article/details/111396760)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [python pandas dataframe 行列选择,切片操作](https://blog.csdn.net/LY_ysys629/article/details/55224284)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Pandas提取指定行列](https://blog.csdn.net/weixin_42670810/article/details/109685030)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值