正态分布性质

两个高斯分布的和的分布——正态分布的再生性 - rainbow70626 - 博客园
https://www.cnblogs.com/rainbow70626/p/14070413.html

两个独立的正态分布的加法:

N(\mu, \delta^{2} )+a \sim N(\mu+a,\delta^{2})

N(\mu,\delta_1^{2})+N(\mu,\delta_2^{2}) \sim N(u,(\delta_1^2+\delta_2^2))

举例:

N(0,1)+1 \sim N(1,1)

N(0,1)+N(1,1)-1 \sim N(0,2)

(1)正态随机变量的线性函数仍为正态随机变量。

(2)正态随机变量的线性组合仍为正态随机变量。

(3)正态随机变量的乘积仍为正态随机变量。

直觉中,两个高斯(正态)随机变量的和似乎应该是两个概率密度函数的和,如下图所示,其结果就近似为两个概率密度的包络线,这明显是错误的,是用直觉推导数学,大错特错

 

t分布、二项分布、Poisson分布的极限为正态分布,在一定条件下,可以按正态分布原理来处理。

  • 15
    点赞
  • 56
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
多元正态分布(Multivariate Normal Distribution)是在多元统计分析中常用的一种概率分布模型。它是一种由多个正态分布组成的联合分布。 多元正态分布包含了多个随机变量,每个变量都服从正态分布。与单变量正态分布类似,多元正态分布也由均值向量和协方差矩阵所确定。 在多元正态分布中,均值向量代表各个随机变量的平均值。协方差矩阵则表示各个变量之间的关联性和变异性。 多元正态分布有许多重要的特性。首先,它是一个典型的钟形曲线,集中于均值处。其次,协方差矩阵描述了不同变量之间的相关性。如果两个变量具有正相关,则它们的取值趋于同时增加或减少;如果两个变量具有负相关,则一个变量增加时,另一个变量会减小。最后,多元正态分布还具备线性组合的性质,即对于该分布中的多个随机变量,其线性组合也是正态分布。 多元正态分布在许多领域有着广泛的应用,特别是在统计学、金融学、经济学、生物学和工程学等学科中。通过多元正态分布,我们可以对多个变量的分布进行建模和分析,理解它们之间的关系,并进行概率推断和假设检验。 总而言之,多元正态分布是多元统计分析领域中常用的概率分布模型,通过均值向量和协方差矩阵的参数化来描述多个随机变量之间的关系。它的应用广泛,在许多领域中起着重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值