MACD策略深测

本文通过测试MACD策略在不同市场环境下的表现,探讨了参数设置对策略效果的影响。研究发现,大盘波动期和平稳期对策略收益有显著影响,且参数调整需考虑市场状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测试说明

此次测试主要有两个角度:①MACD策略有效性随大盘波动影响的测试;②参数设置对MACD策略的影响测试。
0
这是2014年以来A股指数的周线图,可以看到在红框部分起伏非常大,设置为大盘波动期的参考对象(2014/8/1-2016/2/19);蓝框部分在历史上相对起伏较小,设置为大盘平缓期的参考对象(2016/12/2-2018/1/12);并加入近期数据作为参照(2019/12/1-2020/4/13)。

MACD的三个参数中,短期均线周期和长期均线周期具有联动性,这里选择调节短期均线周期进行测试。参数标准为(12,26,9)。

代码模板

选股策略,并做了一定简化。

import numpy as np
import pandas as pd
import talib as tb

def initialize(context):
    """初始化函数"""
    
    # 记录股票的收益率
    g.retio = {}
    # 使用真实价格交易
    set_option('use_real_price', True)
    # 指定周期性交易函数
    run_daily(trade, 'every_bar')
    
    
def trade(context):
    """交易函数"""
    
    '''一、挑选出高质量的股票'''
    stocks_choose = get_fundamentals(
        query(
            valuation.code
            ).filter(
                valuation.pe_ratio < 40,
                valuation.pe_ratio > 10,
                indicator.eps > 0.3,
                indicator.inc_net_profit_annual > 0.30,
                indicator.roe > 15
                ).order_by(
                    valuation.pb_ratio.asc()
                    ).limit(50), 
        date=None)
    
    # 将股票代码集转成ndarray,因为它比列表的计算速度更快
    stocks_pool = stocks_choose['code'].values
    
    '''二、剔除st、停牌、退市的股票'''
    current_data = get_current_data()
    # 剔除停牌
    stocks_pool = [stock for stock in stocks_pool if not current_data[stock].paused]
    # 剔除st
    stocks_pool = [stock for stock in stocks_pool if not current_data[stock].is_st]
    # 剔除退市
    stocks_pool = [stock for stock in stocks_pool if not '退' in current_data[stock].name]
    
    '''三、股票交易条件判断'''
    # 买入列表
    stocks_long = []
    # 卖出列表
    stocks_short = []
    # 继续持有列表
    stocks_hold = []
    #MACD判断
    for stock in stocks_pool:
        # 获得之前300天的收盘价
        prices = attribute_history(stock, 300, '1d', ['close'])
        # 将价格值转换成ndarray
        price = np.array(prices['close'])
        # 计算MACD值
        DIF, DEA, MACD = tb.MACD(
            price,
            fastperiod=6,
            slowperiod=26,
            signalperiod=9)
            
        # 在0轴上金叉买入
        if DIF[-1] > 0 and DEA[-1] > 0:
            if (DIF[-2] <= DEA[-2]) and (DIF[-1] > DEA[-1]):
                stocks_long.append(stock)
        # 在MACD最高点卖出
        if MACD[-1] < MACD[-2] * 1.05:
            stocks_short.append(stock)
            
    
    '''四、卖出持仓中符合卖出条件的股票'''
    # 持仓
    hold_list = list(context.portfolio.positions.keys())
    # 判断
    for stock in hold_list:
        # 计算持仓股票的收益率
        cost = context.portfolio.positions[stock].avg_cost
        price = context.portfolio.positions[stock].price
        ret = (price/cost) - 1
        
        # 记录收益率,如果当前收益率比之前大,替换之前的记录
        # 如果当前收益率比记录的最大收益率小20%,止损,卖出
        if stock in g.retio.keys():
            if ret > g.retio[stock]:
                g.retio[stock] = ret
            elif (ret - g.retio[stock]) < -0.2:
                order_target_value(stock, 0)
                del g.retio[stock]
        else:
            g.retio[stock] = ret
        
        # 将在卖出列表中的股票卖出
        if stock in stocks_short:
            order_target_value(stock, 0)
        # 继续持仓的股票
        else:
            stocks_hold.append(stock)
            
    '''五、买入符合条件的股票'''
    # 买入列表,已经持仓的不再重复买入
    buy_list = list(set(stocks_long) - set(stocks_hold))
    # 买入
    if len(buy_list) > 0:
        Cash = context.portfolio.available_cash / len(buy_list)
        for stock in buy_list:
            order_value(stock, Cash)
测试结果

波动期基准收益:29.84%
平稳期基准收益:18.51%
近期基准收益:-1.97%

signalperiod=6

fastperiod波 动 期平 稳 期近 期
678.71%98.21%-4.83%
932.08%94.74%-12.98%
1237.99%98.57%-22.21%
1560.84%46.55%-29.18%

signalperiod=10

fastperiod波 动 期平 稳 期近 期
650.57%107.68%-19.47%
965.65%96.11%-22.15%
1252.42%-13.30%-24.86%
1556.32%-3.50%-7.32%

signalperiod=14

fastperiod波 动 期平 稳 期近 期
638.77%98.57%-29.18%
958.62%-13.53%-18.11%
1253.32%-3.01%-25.26%
1552.36%-6.73%-15.91%

signalperiod=18

fastperiod波 动 期平 稳 期近 期
653.30%54.32%-28.09%
979.22%-1.76%-12.85%
1244.96%-9.89%-17.63%
1541.77%-9.70%-5.71%

总结:根据回测过程中收益波动情况与具体收益数值结果,我有如下几点结论
(1)股票收益情况与大盘走势有较大关联
(2)波动前期的大牛市阶段,MACD策略显得比较保守,实质收益不算高
(3)波动后期的大回落阶段,MACD策略在各参数下都较好地维持住了原有收益
(4)平稳期在一定意义上也是“波动期”,因为价格平稳,所以每天涨跌情况都很随机,不会像波动期长期处于一个大趋势中。也因此,需要“缩短视野”,将fastperiod调小,这影响很大,而signalperiod也要相对调小一些
(5)在近期A股总体呈下跌趋势的情况下,将fastperiod调大即策略调保守一些是比较合适的,signalperiod也应适当调大
(6)总体而言,signalperiod对收益结果的影响相对较小
(7)综合来看,(6,26,9)的参数设置在三种情况下总体收益最高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值