测试说明
此次测试主要有两个角度:①MACD策略有效性随大盘波动影响的测试;②参数设置对MACD策略的影响测试。
这是2014年以来A股指数的周线图,可以看到在红框部分起伏非常大,设置为大盘波动期的参考对象(2014/8/1-2016/2/19);蓝框部分在历史上相对起伏较小,设置为大盘平缓期的参考对象(2016/12/2-2018/1/12);并加入近期数据作为参照(2019/12/1-2020/4/13)。
MACD的三个参数中,短期均线周期和长期均线周期具有联动性,这里选择调节短期均线周期进行测试。参数标准为(12,26,9)。
代码模板
选股策略,并做了一定简化。
import numpy as np
import pandas as pd
import talib as tb
def initialize(context):
"""初始化函数"""
# 记录股票的收益率
g.retio = {}
# 使用真实价格交易
set_option('use_real_price', True)
# 指定周期性交易函数
run_daily(trade, 'every_bar')
def trade(context):
"""交易函数"""
'''一、挑选出高质量的股票'''
stocks_choose = get_fundamentals(
query(
valuation.code
).filter(
valuation.pe_ratio < 40,
valuation.pe_ratio > 10,
indicator.eps > 0.3,
indicator.inc_net_profit_annual > 0.30,
indicator.roe > 15
).order_by(
valuation.pb_ratio.asc()
).limit(50),
date=None)
# 将股票代码集转成ndarray,因为它比列表的计算速度更快
stocks_pool = stocks_choose['code'].values
'''二、剔除st、停牌、退市的股票'''
current_data = get_current_data()
# 剔除停牌
stocks_pool = [stock for stock in stocks_pool if not current_data[stock].paused]
# 剔除st
stocks_pool = [stock for stock in stocks_pool if not current_data[stock].is_st]
# 剔除退市
stocks_pool = [stock for stock in stocks_pool if not '退' in current_data[stock].name]
'''三、股票交易条件判断'''
# 买入列表
stocks_long = []
# 卖出列表
stocks_short = []
# 继续持有列表
stocks_hold = []
#MACD判断
for stock in stocks_pool:
# 获得之前300天的收盘价
prices = attribute_history(stock, 300, '1d', ['close'])
# 将价格值转换成ndarray
price = np.array(prices['close'])
# 计算MACD值
DIF, DEA, MACD = tb.MACD(
price,
fastperiod=6,
slowperiod=26,
signalperiod=9)
# 在0轴上金叉买入
if DIF[-1] > 0 and DEA[-1] > 0:
if (DIF[-2] <= DEA[-2]) and (DIF[-1] > DEA[-1]):
stocks_long.append(stock)
# 在MACD最高点卖出
if MACD[-1] < MACD[-2] * 1.05:
stocks_short.append(stock)
'''四、卖出持仓中符合卖出条件的股票'''
# 持仓
hold_list = list(context.portfolio.positions.keys())
# 判断
for stock in hold_list:
# 计算持仓股票的收益率
cost = context.portfolio.positions[stock].avg_cost
price = context.portfolio.positions[stock].price
ret = (price/cost) - 1
# 记录收益率,如果当前收益率比之前大,替换之前的记录
# 如果当前收益率比记录的最大收益率小20%,止损,卖出
if stock in g.retio.keys():
if ret > g.retio[stock]:
g.retio[stock] = ret
elif (ret - g.retio[stock]) < -0.2:
order_target_value(stock, 0)
del g.retio[stock]
else:
g.retio[stock] = ret
# 将在卖出列表中的股票卖出
if stock in stocks_short:
order_target_value(stock, 0)
# 继续持仓的股票
else:
stocks_hold.append(stock)
'''五、买入符合条件的股票'''
# 买入列表,已经持仓的不再重复买入
buy_list = list(set(stocks_long) - set(stocks_hold))
# 买入
if len(buy_list) > 0:
Cash = context.portfolio.available_cash / len(buy_list)
for stock in buy_list:
order_value(stock, Cash)
测试结果
波动期基准收益:29.84%
平稳期基准收益:18.51%
近期基准收益:-1.97%
signalperiod=6
fastperiod | 波 动 期 | 平 稳 期 | 近 期 |
---|---|---|---|
6 | 78.71% | 98.21% | -4.83% |
9 | 32.08% | 94.74% | -12.98% |
12 | 37.99% | 98.57% | -22.21% |
15 | 60.84% | 46.55% | -29.18% |
signalperiod=10
fastperiod | 波 动 期 | 平 稳 期 | 近 期 |
---|---|---|---|
6 | 50.57% | 107.68% | -19.47% |
9 | 65.65% | 96.11% | -22.15% |
12 | 52.42% | -13.30% | -24.86% |
15 | 56.32% | -3.50% | -7.32% |
signalperiod=14
fastperiod | 波 动 期 | 平 稳 期 | 近 期 |
---|---|---|---|
6 | 38.77% | 98.57% | -29.18% |
9 | 58.62% | -13.53% | -18.11% |
12 | 53.32% | -3.01% | -25.26% |
15 | 52.36% | -6.73% | -15.91% |
signalperiod=18
fastperiod | 波 动 期 | 平 稳 期 | 近 期 |
---|---|---|---|
6 | 53.30% | 54.32% | -28.09% |
9 | 79.22% | -1.76% | -12.85% |
12 | 44.96% | -9.89% | -17.63% |
15 | 41.77% | -9.70% | -5.71% |
总结:根据回测过程中收益波动情况与具体收益数值结果,我有如下几点结论
(1)股票收益情况与大盘走势有较大关联
(2)波动前期的大牛市阶段,MACD策略显得比较保守,实质收益不算高
(3)波动后期的大回落阶段,MACD策略在各参数下都较好地维持住了原有收益
(4)平稳期在一定意义上也是“波动期”,因为价格平稳,所以每天涨跌情况都很随机,不会像波动期长期处于一个大趋势中。也因此,需要“缩短视野”,将fastperiod调小,这影响很大,而signalperiod也要相对调小一些
(5)在近期A股总体呈下跌趋势的情况下,将fastperiod调大即策略调保守一些是比较合适的,signalperiod也应适当调大
(6)总体而言,signalperiod对收益结果的影响相对较小
(7)综合来看,(6,26,9)的参数设置在三种情况下总体收益最高