一、环境准备
注意安装包是pip install grad_cam而不是pytorch_grad_cam。一个是包名一个是导入名。之前发现怎么都装不上。
pip install "grad-cam==1.4.0"
导入时调用pytorch_grad_cam
```python
from pytorch_grad_cam import GradCAM, ScoreCAM, GradCAMPlusPlus,AblationCAM, \
XGradCAM, EigenCAM, EigenGradCAM,LayerCAM,FullGrad
from pytorch_grad_cam import GuidedBackpropReLUModel
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
import cv2
import numpy as np
import torch
二、加载预训练的vit模型(离线加载或在线加载)
因为网络问题,使用离线定义网络与离线加载模型方法,也可以在线torch.hub.load加载
#离线模型,模型定义具体省略
my_model = models.init_models(myargs)#省略
model_pkl = "******/dino_finetune.pkl"#加载自己训练好的模型
my_model.load_state_dict(torch.load(model_pkl))
my_model.eval()
##在线模型加载
#my_model = torch.hub.load('facebookresearch/deit:main','deit_tiny_patch16_224', #pretrained=True)
#my_model.eval()
# 判断是否使用 GPU 加速
use_cuda = torch.cuda.is_available()
if use_cuda:
my_model = my_model.cuda