计算机视觉中的多视图几何 -- 射影空间与齐次坐标

计算机视觉中的多视图几何 引言

这篇是引言,主要对射影几何的来源、齐次坐标等进行一个高屋建瓴的阐述。


为什么需要射影空间

欧式几何是我们最熟悉的几何空间,描述了真实世界中物体的角度和形状。
但是它有一个特别麻烦的地方:为了推理该几何的一些基本概念,需要给出一些例外。比如直线的交点,我们不能大胆地说,两条直线都交于一点,因为有平行线的存在,一种弥补的方法是说平行线交于无穷远点,但在欧式空间中,并不能从代数上表示无穷远点,所以并不能让人信服。
射影空间则是规避这个问题而产生的,即在平行线的相交处补充无穷远点来扩充欧式平面。而在代数上,射影几何通过三元组表示一个点,如欧式几何中,点 ( x , y ) (x,y) (x,y),在射影几何中表示为: ( k x , k y , k ) (kx,ky,k) (kx,ky,k),且定义对于相差一个公共倍数的三元组是等价的。
可以看到,当 k = 0 k=0 k=0时,会发现此时对应的欧式点的坐标为无限大,即无穷远点。
通过这种表示方式,即在点的代数表示上增加一维(称为齐次坐标),就可以将欧式空间 I R n IR^n IRn扩展为 I P n IP^n IPn。除了弥补例外,齐次坐标还有一些有用的性质,比如可以将一些非线性变换转化为线性变换。其本质是一定程度上提升问题的维度。


从射影恢复仿射和欧式空间

在射影空间中,所有点等价,且无平行的概念,其中任意一个3x3的非奇异矩阵都对应一个该空间中的线性变换,称为射影变换,在射影变换下,无穷远点不被保持。
虽然射影空间里一切等价,但是在现实中,平行还是一个需要被区分的情况,而在射影空间中区分平行,只需要指定无穷远直线,与其交于一点的直线就是平行直线。
而通过将无穷远直线恢复到标准位置,射影几何就退化为仿射几何,一种保持平行的几何空间。
仿射几何是射影几何的特殊化,而欧式几何则是仿射几何的特殊化,通过在射影空间中指明无穷远直线和另一个特殊的角色,可以恢复欧式几何。
这个特殊角色就是:绝对二次曲线,一条由复值点构成,处于无穷远处的二次曲线。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值