计算机视觉中的多视图几何 引言
这篇是引言,主要对射影几何的来源、齐次坐标等进行一个高屋建瓴的阐述。
为什么需要射影空间
欧式几何是我们最熟悉的几何空间,描述了真实世界中物体的角度和形状。
但是它有一个特别麻烦的地方:为了推理该几何的一些基本概念,需要给出一些例外。比如直线的交点,我们不能大胆地说,两条直线都交于一点,因为有平行线的存在,一种弥补的方法是说平行线交于无穷远点,但在欧式空间中,并不能从代数上表示无穷远点,所以并不能让人信服。
射影空间则是规避这个问题而产生的,即在平行线的相交处补充无穷远点来扩充欧式平面。而在代数上,射影几何通过三元组表示一个点,如欧式几何中,点
(
x
,
y
)
(x,y)
(x,y),在射影几何中表示为:
(
k
x
,
k
y
,
k
)
(kx,ky,k)
(kx,ky,k),且定义对于相差一个公共倍数的三元组是等价的。
可以看到,当
k
=
0
k=0
k=0时,会发现此时对应的欧式点的坐标为无限大,即无穷远点。
通过这种表示方式,即在点的代数表示上增加一维(称为齐次坐标),就可以将欧式空间
I
R
n
IR^n
IRn扩展为
I
P
n
IP^n
IPn。除了弥补例外,齐次坐标还有一些有用的性质,比如可以将一些非线性变换转化为线性变换。其本质是一定程度上提升问题的维度。
从射影恢复仿射和欧式空间
在射影空间中,所有点等价,且无平行的概念,其中任意一个3x3的非奇异矩阵都对应一个该空间中的线性变换,称为射影变换,在射影变换下,无穷远点不被保持。
虽然射影空间里一切等价,但是在现实中,平行还是一个需要被区分的情况,而在射影空间中区分平行,只需要指定无穷远直线,与其交于一点的直线就是平行直线。
而通过将无穷远直线恢复到标准位置,射影几何就退化为仿射几何,一种保持平行的几何空间。
仿射几何是射影几何的特殊化,而欧式几何则是仿射几何的特殊化,通过在射影空间中指明无穷远直线和另一个特殊的角色,可以恢复欧式几何。
这个特殊角色就是:绝对二次曲线,一条由复值点构成,处于无穷远处的二次曲线。