量化策略:如何利用自回归模型构建日内高频策略

本文探讨了Ernie Chan的量化交易书籍中关于使用自回归模型(AR)进行日内高频交易的策略。通过R语言研究,发现价格序列存在自相关性,但高交易频率导致盈利难以覆盖成本。降低交易频率至10分钟K线,虽改善了盈利,但仍不足够。结论指出,虽然短期均值回归存在,但在实际交易中可能不具经济可行性。
摘要由CSDN通过智能技术生成

我非常喜欢Ernie Chan写的量化交易的书籍:《Quantitative Trading》,《Algorithmic Trading》和《Machine Trading》。书中有一些很棒的见解,但是我最喜欢的是对各种策略进行简单而透彻的讲解,以及可以用来研究和交易的量化工具。Ernie明确指出,书中的示例无法用于实盘交易,但它们无疑为后来者提供了指引。

《Machine Trading》介绍了一种基于自回归模型的外汇日内交易策略,它的净值曲线非常吸引人,所以我决定深入研究一下。

本文来自《数据黑客》,登录官网可阅读更多精彩资讯和文章。

自回归模型

自回归(Autoregressive)模型是时间序列模型,其中:

  • 预测变量是时间序列的过去值
  • 目标变量是时间序列的未来值

如果使用时间序列的一阶滞后y(t-1)作为预测变量,则AR模型被称为AR(1),如下所示:

y t = β 0 + β 1 y t − 1 + ϵ t ( β 为 回 归 系 数 ) y_t = \beta_0 + \beta_1 y {t-1} + \epsilon_t (\beta为回归系数) yt=β0+β1yt1+ϵt(β)
如果使用二阶滞后y(t-1), y(t-2)作为预测变量,将其称为AR(2)模型,如下所示:

y t = β 0 +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值