我非常喜欢Ernie Chan写的量化交易的书籍:《Quantitative Trading》,《Algorithmic Trading》和《Machine Trading》。书中有一些很棒的见解,但是我最喜欢的是对各种策略进行简单而透彻的讲解,以及可以用来研究和交易的量化工具。Ernie明确指出,书中的示例无法用于实盘交易,但它们无疑为后来者提供了指引。
《Machine Trading》介绍了一种基于自回归模型的外汇日内交易策略,它的净值曲线非常吸引人,所以我决定深入研究一下。
本文来自《数据黑客》,登录官网可阅读更多精彩资讯和文章。
自回归模型
自回归(Autoregressive)模型是时间序列模型,其中:
- 预测变量是时间序列的过去值
- 目标变量是时间序列的未来值
如果使用时间序列的一阶滞后y(t-1)作为预测变量,则AR模型被称为AR(1),如下所示:
y t = β 0 + β 1 y t − 1 + ϵ t ( β 为 回 归 系 数 ) y_t = \beta_0 + \beta_1 y {t-1} + \epsilon_t (\beta为回归系数) yt=β0+β1yt−1+ϵt(β为回归系数)
如果使用二阶滞后y(t-1), y(t-2)作为预测变量,将其称为AR(2)模型,如下所示:
y t = β 0 +