微分方程(Blanchard Differential Equations 4th)中文版Section1.7

分支理论初步

带参数的方程

在我们的许多模型中,一个常见的特征是除了涉及的变量之外,还包含参数。参数是那些不依赖于时间(自变量)的量,而是根据具体应用的情况取不同值。例如,人口的指数增长模型

d P d t = k P \frac{dP}{dt} = kP dtdP=kP

包含了参数 k k k,即增长率的比例常数。这个模型的一个基本假设是增长率 d P d t \frac{dP}{dt} dtdP 是总人口 P P P 的一个常数倍。然而,当我们将这个模型应用于不同的物种时,我们期望使用不同的比例常数。例如,用于兔子的 k k k 值会显著大于用于人的 k k k 值。

参数变化对解的行为的影响是研究微分方程的一个特别重要的方面。对于某些模型,我们必须研究解在特定范围内的所有参数值下的行为。例如,考虑一个桥梁随时间运动的模型。在这种情况下,桥梁上的汽车数量可能会影响桥梁对风的反应,桥梁的运动模型可能包含一个表示桥梁上汽车总质量的参数。在这种情况下,我们希望了解该模型对各种不同质量值的解的行为。

在许多模型中,我们只能得到参数的近似值。然而,为了使模型对我们有用,我们必须知道参数值的微小变化对解的行为的影响。此外,可能还有我们在模型中未包含的影响,这些影响会导致参数以意想不到的方式变化。在许多复杂的物理系统中,这些有意或无意的参数调整的长期影响可能非常剧烈。

在本节中,我们研究了当参数变化时,微分方程解的变化。我们研究具有一个参数的自主方程。我们发现,参数的微小变化通常会导致解的性质发生微小变化。然而,偶尔参数的微小变化可能会导致解的长期行为发生剧烈变化。这种变化称为分岔(bifurcation)。如果一个依赖于参数的微分方程的解的行为发生了定性变化,我们就说该微分方程发生了分岔。

依赖参数的微分方程的表示法

一个依赖于参数的自主微分方程的例子是

d y d t = y 2 − 2 y + μ . \frac{dy}{dt} = y^2 - 2y + \mu. dtdy=y22y+μ.

这里的参数是 μ \mu μ。自变量是 $t, 而因变量是 y y y,如通常所示。注意,这个方程实际上表示了无限多个不同的方程,每一个 μ \mu μ 的值对应一个方程。我们把 μ \mu μ 的值看作是每个方程中的常数,但不同的 μ \mu μ 值产生不同的微分方程,每个方程都有不同的一组解。由于它们在微分方程中扮演的角色不同,我们使用一种表示法来区分右侧对 y y y μ \mu μ 的依赖关系。我们定义

f μ ( y ) = y 2 − 2 y + μ . f_\mu(y) = y^2 - 2y + \mu. fμ(y)=y22y+μ.

参数 μ \mu μ 出现在下标中,而因变量 y y y 是函数 f μ f_\mu fμ 的参数。如果我们想指定某个特定的 μ \mu μ 值,例如 μ = 3 \mu = 3 μ=3,那么我们写成

f 3 ( y ) = y 2 − 2 y + 3. f_3(y) = y^2 - 2y + 3. f3(y)=y22y+3.

μ = 3 \mu = 3 μ=3 时,我们得到相应的微分方程

d y d t = f 3 ( y ) = y 2 − 2 y + 3. \frac{dy}{dt} = f_3(y) = y^2 - 2y + 3. dtdy=f3(y)=y22y+3.

我们一般使用这种表示法。一个依赖于参数 μ \mu μ 的因变量 y y y 的函数表示为 f μ ( y ) f_\mu(y) fμ(y)。对应的微分方程是

d y d t = f μ ( y ) . \frac{dy}{dt} = f_\mu(y). dtdy=fμ(y).

由于这样的微分方程实际上指的是一组不同的方程,每个方程对应一个 μ \mu μ 值,我们称这样的方程为一个一参数微分方程族。

一参数族中的一个分岔

我们来详细研究一下以下的一参数族

d y d t = f μ ( y ) = y 2 − 2 y + μ . \frac{dy}{dt} = f_\mu(y) = y^2 - 2y + \mu. dtdy=fμ(y)=y22y+μ.

对于每一个 μ \mu μ 值,我们都有一个自主微分方程,可以使用前面部分的技术绘制其相图并进行分析。我们从研究具体的 μ \mu μ 值开始。由于我们还不知道最有趣的 μ \mu μ 值,我们可以从整数值开始,例如 μ = − 4 \mu = -4 μ=4 μ = − 2 \mu = -2 μ=2 μ = 0 \mu = 0 μ=0 μ = 2 \mu = 2 μ=2 μ = 4 \mu = 4 μ=4。虽然一般情况下 μ \mu μ 不必是整数,但我们可以从整数值 μ \mu μ 开始我们的分析。对于每个 μ \mu μ,我们有一个自主微分方程及其相图。例如,对于 μ = − 2 \mu = -2 μ=2,方程是

d y d t = f − 2 ( y ) = y 2 − 2 y − 2. \frac{dy}{dt} = f_{-2}(y) = y^2 - 2y - 2. dtdy=f2(y)=y22y2.

这个微分方程的平衡点是满足

f − 2 ( y ) = y 2 − 2 y − 2 = 0 f_{-2}(y) = y^2 - 2y - 2 = 0 f2(y)=y22y2=0

y y y 值。解这个方程,我们得到平衡点 y = 1 − 3 y = 1 - \sqrt{3} y=13 y = 1 + 3 y = 1 + \sqrt{3} y=1+3 。在这两个平衡点之间,函数 f − 2 f_{-2} f2 为负,而在平衡点的上方和下方, f − 2 f_{-2} f2 为正。因此, y = 1 − 3 y = 1 - \sqrt{3} y=13 是一个汇点(sink),而 y = 1 + 3 y = 1 + \sqrt{3} y=1+3 是一个源点(source)。有了这些信息,我们可以绘制相图。对于其他的 μ \mu μ 值,我们可以采取类似的步骤绘制相图。所有这些相图如图 1.78 所示。

这个过程的核心是通过分析不同 μ \mu μ 值下的相图,了解系统如何随参数变化而变化。在上述情况下,我们可以观察到,随着 μ \mu μ 的变化,平衡点的性质发生了改变。具体地,当 μ \mu

  • 9
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值