微分方程(Blanchard Differential Equations 4th)中文版Section5.4

耗散系统

哈密顿系统在上一节中讨论的显然是理想化的系统。在现实世界中,摆不会永远以周期性运动摆动,而是会逐渐停止,能量被耗散掉了。在本节中,我们将详细讨论这些类型的耗散系统。我们首先通过考虑一个小的阻尼项来修改理想的摆模型。

带摩擦的非线性摆

回顾描述摆运动的二阶方程:
d 2 θ d t 2 + b m d θ d t + g l sin ⁡ θ = 0 , \frac{d^2 \theta}{dt^2} + \frac{b}{m} \frac{d\theta}{dt} + \frac{g}{l} \sin \theta = 0, dt2d2θ+mbdtdθ+lgsinθ=0,
其中 b b b 是阻尼系数, m m m 是摆锤的质量, g g g 是重力加速度( g ≈ 9.8   m/s 2 g ≈ 9.8 \, \text{m/s}^2 g9.8m/s2), l l l 是摆臂的长度(见第 496 页)。所有参数都是正数。项
b m d θ d t \frac{b}{m} \frac{d\theta}{dt} mbdtdθ
是由于空气阻力或摆臂转动轴的摩擦引起的阻尼效应。在我们的理想系统中,我们假设 b = 0 b = 0 b=0。而在本节中,我们假设 b ≠ 0 b ≠ 0 b=0
引入速度 v = d θ d t v = \frac{d\theta}{dt} v=dtdθ,可以将这个二阶微分方程以通常的方式写为一个非线性系统:
d θ d t = v , \frac{d\theta}{dt} = v, dtdθ=v,
d v d t = − b m v − g l sin ⁡ θ . \frac{dv}{dt} = -\frac{b}{m} v - \frac{g}{l} \sin \theta. dtdv=mbvlgsinθ.
该系统不再是哈密顿系统,因为我们的哈密顿函数存在性测试(见第 499 页)不再成立,因为
∂ ∂ θ ( v ) = 0 , 但 − ∂ ∂ v ( − b m v − g l sin ⁡ θ ) = b m ≠ 0. \frac{\partial}{\partial \theta} (v) = 0, \quad \text{但} \quad - \frac{\partial}{\partial v} \left(- \frac{b}{m} v - \frac{g}{l} \sin \theta \right) = \frac{b}{m} \neq 0. θ(v)=0,v(mbvlgsinθ)=mb=0.

平衡点和零轨

我们通过寻找阻尼摆系统的平衡点来开始研究:
d θ d t = v , \frac{d\theta}{dt} = v, dtdθ=v,
d v d t = − b m v − g l sin ⁡ θ . \frac{dv}{dt} = -\frac{b}{m} v - \frac{g}{l} \sin \theta. dtdv=mbvlgsinθ.
对于理想摆,平衡点出现在 ( θ , v ) = ( 0 , 0 ) (\theta, v) = (0, 0) (θ,v)=(0,0) ( ± π , 0 ) (\pm \pi, 0) (±π,0) ( ± 2 π , 0 ) (\pm 2\pi, 0) (±2π,0),等点。

在平衡点 ( θ , v ) (\theta, v) (θ,v) 处,该向量场的雅可比矩阵为:
( 0 1 − g l cos ⁡ θ − b m ) . \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} \cos \theta & -\frac{b}{m} \end{pmatrix}. (0lgcosθ1mb).
对于平衡点 ( θ , v ) = ( 0 , 0 ) (\theta, v) = (0, 0) (θ,v)=(0,0) ( ± 2 π , 0 ) (\pm 2\pi, 0) (±2π,0) ( ± 4 π , 0 ) (\pm 4\pi, 0) (±4π,0),等(即摆垂直向下的位置),矩阵为:
( 0 1 − g l − b m ) . \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & -\frac{b}{m} \end{pmatrix}. (0lg1mb).
该矩阵的特征值是下列特征方程的根:
− λ ( − b m − λ ) + g l = 0 , -\lambda \left( -\frac{b}{m} - \lambda \right) + \frac{g}{l} = 0, λ(mbλ)+lg=0,
简化为:
λ 2 + b m λ + g l = 0. \lambda^2 + \frac{b}{m} \lambda + \frac{g}{l} = 0. λ2+mbλ+lg=0.

因此,雅可比矩阵的特征值为:
− b 2 m ± ( b 2 m ) 2 − g l . -\frac{b}{2m} \pm \sqrt{\left( \frac{b}{2m} \right)^2 - \frac{g}{l}}. 2mb±(2mb)2lg .

根据 ( b 2 m ) 2 − g l \left( \frac{b}{2m} \right)^2 - \frac{g}{l} (2mb)2lg 的符号,有三种不同的情况:

  1. 如果这个量为负,那么雅可比矩阵的特征值是复数。实部为 − b 2 m -\frac{b}{2m} 2mb,这是负数,因此这种情况下平衡点是螺旋吸点

  2. 如果 ( b 2 m ) 2 − g l > 0 \left( \frac{b}{2m} \right)^2 - \frac{g}{l} > 0 (2mb)2lg>0,则有两个不同的实特征值。因为
    0 < ( b 2 m ) 2 − g l < ( b 2 m ) 2 , 0 < \left( \frac{b}{2m} \right)^2 - \frac{g}{l} < \left( \frac{b}{2m} \right)^2, 0<(2mb)2lg<(2mb)2,
    所以
    b 2 m > ( b 2 m ) 2 − g l , \frac{b}{2m} > \sqrt{\left( \frac{b}{2m} \right)^2 - \frac{g}{l}}, 2mb>(2mb)2lg ,
    这意味着两个特征值都是负数。因此平衡点是吸点

  3. 如果 ( b 2 m ) 2 − g l = 0 \left( \frac{b}{2m} \right)^2 - \frac{g}{l} = 0 (2mb)2lg=0,那么特征值为重复的 − b 2 m -\frac{b}{2m} 2mb,这是负数,因此平衡点也是吸点

在每种情况下,我们都得出结论:在 ( θ , v ) = ( 0 , 0 ) , ( ± 2 π , 0 ) , ( ± 4 π , 0 ) , … (\theta, v) = (0, 0), (\pm 2\pi, 0), (\pm 4\pi, 0), \dots (θ,v)=(0,0),(±2π,0),(±4π,0), 处的平衡点都是吸点。如果我们只关注摩擦较小的摆,那么 b b b 很小。对于足够小的 b b b,我们有 ( b 2 m ) 2 − g l \left( \frac{b}{2m} \right)^2 - \frac{g}{l} (2mb)2lg 为负,因此这些平衡点是螺旋吸点。我们将在此处仅讨论这种情况(其他情况见练习)。

在其他平衡点 ( θ , v ) = ( ± π , 0 ) , ( ± 3 π , 0 ) , … (\theta, v) = (\pm \pi, 0), (\pm 3\pi, 0), \dots (θ,v)=(±π,0),(±3π,0),,这些平衡点对应于摆竖直向上的情况,其雅可比矩阵为:
( 0 1 g l − b m ) , \begin{pmatrix} 0 & 1 \\ \frac{g}{l} & -\frac{b}{m} \end{pmatrix}, (0lg1mb),
这是这些点线性化系统的系数矩阵。特征值为:
− b 2 m ± ( b 2 m ) 2 + g l . -\frac{b}{2m} \pm \sqrt{\left( \frac{b}{2m} \right)^2 + \frac{g}{l}}. 2mb±(2mb)2+lg .
这些特征值总是实数,因为 b b b m m m l l l g g g 都是正数。特征值 − b 2 m + ( b 2 m ) 2 + g l -\frac{b}{2m} + \sqrt{\left( \frac{b}{2m} \right)^2 + \frac{g}{l}} 2mb+(2mb)2+lg 为正数,而另一个特征值 − b 2 m − ( b 2 m ) 2 + g l -\frac{b}{2m} - \sqrt{\left( \frac{b}{2m} \right)^2 + \frac{g}{l}} 2mb

  • 11
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值