微分方程(Blanchard Differential Equations 4th)中文版Section6.2

非连续函数的 Laplace 变换

在第6.1节中,我们看到使用拉普拉斯变换来求解线性微分方程涉及到与之前的方法完全不同的思路。微分和积分操作被代数运算所取代。然而,拉普拉斯变换并不是万能的。它们只适用于线性方程,尽管它们用代数代替了微积分,但代数运算可能非常复杂。

考虑到这些限制,重要的是要问我们为什么需要另一种解决线性方程的方法。本章的剩余部分将致力于拉普拉斯变换的应用,这些应用使我们能够研究新类型的方程,并对熟悉的方程提供新的见解。

在应用中,不连续函数自然会出现。例如,新物种或疾病突然出现影响到一个群体,或者开关灯的操作,这些都是不连续现象。包含不连续函数的微分方程使用我们之前的方法在分析上处理起来很困难,但拉普拉斯变换有时能够驯服这些不连续性,如以下例子所示。
在这里插入图片描述

单位阶跃函数的拉普拉斯变换的

对于 a ≥ 0 a \geq 0 a0,设 u a ( t ) u_a(t) ua(t) 表示函数:
u a ( t ) = { 0 , if  t < a ; 1 , if  t ≥ a . u_a(t) = \begin{cases} 0, & \text{if } t < a; \\ 1, & \text{if } t \geq a. \end{cases} ua(t)={0,1,if t<a;if ta.
这个函数称为单位阶跃函数(Heaviside函数),在 t = a t = a t=a 处具有一个跳跃,从 0 0 0 跳到 1 1 1。其拉普拉斯变换可以用来处理系统中由于突变或开关事件引起的不连续性。

单位阶跃函数的拉普拉斯变换

单位阶跃函数 u a ( t ) u_a(t) ua(t) 的拉普拉斯变换为:
L [ u a ] = ∫ 0 ∞ u a ( t ) e − s t   d t . \mathcal{L}[u_a] = \int_{0}^{\infty} u_a(t) e^{-st} \, dt. L[ua]=0ua(t)estdt.

为了计算这个积分,我们使用 u a ( t ) u_a(t) ua(t) 的定义,并将计算分为两部分:
L [ u a ] = ∫ 0 a u a ( t ) e − s t   d t + ∫ a ∞ u a ( t ) e − s t   d t . \mathcal{L}[u_a] = \int_{0}^{a} u_a(t) e^{-st} \, dt + \int_{a}^{\infty} u_a(t) e^{-st} \, dt. L[ua]=0aua(t)estdt+aua(t)estdt.

第一个积分为零,因为 u a ( t ) u_a(t) ua(t) t < a t < a t<a 时为零。我们可以简化第二个积分,因为在 t ≥ a t \geq a ta u a ( t ) = 1 u_a(t) = 1 ua(t)=1,因此:
L [ u a ] = ∫ a ∞ e − s t   d t . \mathcal{L}[u_a] = \int_{a}^{\infty} e^{-st} \, dt. L[ua]=aestdt.

计算这个积分:
L [ u a ] = lim ⁡ b → ∞ ∫ a b e − s t   d t = lim ⁡ b → ∞ [ e − s t − s ] a b . \mathcal{L}[u_a] = \lim_{b \to \infty} \int_{a}^{b} e^{-st} \, dt = \lim_{b \to \infty} \left[ \frac{e^{-st}}{-s} \right]_{a}^{b}. L[ua]=blimabestdt=blim[sest]ab.

代入积分的上下限:
L [ u a ] = lim ⁡ b → ∞ ( e − s b − s − e − s a − s ) = lim ⁡ b → ∞ ( − e − s b s + e − s a s ) . \mathcal{L}[u_a] = \lim_{b \to \infty} \left( \frac{e^{-sb}}{-s} - \frac{e^{-sa}}{-s} \right) = \lim_{b \to \infty} \left( \frac{-e^{-sb}}{s} + \frac{e^{-sa}}{s} \right). L[ua]=blim(sesbsesa)=blim(sesb+sesa).

因为 e − s b → 0 e^{-sb} \to 0 esb0 b → ∞ b \to \infty b 时:
L [ u a ] = 0 + e − s a s = e − a s s . \mathcal{L}[u_a] = 0 + \frac{e^{-sa}}{s} = \frac{e^{-as}}{s}. L[ua]=0+sesa=seas.

我们得到了公式:
L [ u a ] = e − a s s . \mathcal{L}[u_a] = \frac{e^{-as}}{s}. L[ua]=seas.

尽管原始函数 u a u_a ua t = a t = a t=a 处有不连续性,但拉普拉斯变换在 s > 0 s > 0 s>0 时是连续的。这种平滑特性是拉普拉斯变换一个非常有用的方面。

含有不连续项的微分方程

考虑初值问题:
d y d t = − y + u 3 ( t ) , y ( 0 ) = 2. \frac{dy}{dt} = -y + u_3(t), \quad y(0) = 2. dtdy=y+u3(t),y(0)=2.

我们可以将这个微分方程重写为:
d y d t = { − y , if  t < 3 ; − y + 1 , if  t ≥ 3. \frac{dy}{dt} = \begin{cases} -y, & \text{if } t < 3; \\ -y + 1, & \text{if } t \geq 3. \end{cases} dtdy={y,y+1,if t<3;if t3.

定性分析

由于这个方程实际上由一对自洽的一级方程组成,我们可以使用第1章的定性方法来分析解的行为。斜率场如图6.5所示。对于 t < 3 t < 3 t<3,方程 d y d t = − y \frac{dy}{dt} = -y dtdy=y y = 0 y = 0 y=0 处有一个吸引点,所有解都会趋近于这个平衡点。对于 t ≥ 3 t \geq 3 t3,方程 d y d t = − y + 1 \frac{dy}{dt} = -y + 1 dtdy=y+1 y = 1 y = 1 y=1 处有一个吸引点,所有其他解都会趋向于此。因此,初值问题的解最初会向 y = 0 y = 0 y=0 下降。然后,在 t = 3 t = 3 t=3 时,解开始向 y = 1 y = 1 y=1 逼近。如果 y ( 3 ) < 1 y(3) < 1 y(3)<1,则解会在 t = 3 t = 3 t=3 处从下降转为上升。如果 y ( 3 ) > 1 y(3) > 1 y(3)>1,解会在 t > 3 t > 3 t>3 时继续向 y = 1 y = 1 y=1 下降。

为了决定初值问题的解在 t → ∞ t \to \infty t 时是否会增加或减少到1,我们必须计算 t = 3 t = 3 t=3 时的解值。

初值问题
d y d t = − y , y ( 0 ) = 2 \frac{dy}{dt} = -y, \quad y(0) = 2 dtdy=y,y(0)=2
的解是 y ( t ) = 2 e − t y(t) = 2e^{-t} y(t)=2et。因此 y ( 3 ) = 2 e − 3 y(3) = 2e^{-3} y(3)=2e3,我们可以看到 y ( 3 ) < 1 y(3) < 1 y(3)<1。因此,解在 t > 3 t > 3 t>3 时会增加,趋向于 y = 1 y = 1 y=1

请注意,为了获得解的定性描述,我们必须找到直到 t = 3 t = 3 t=3 时的解析解,这时 u 3 ( t ) u_3(t) u3(t) “开启”。

使用拉普拉斯变换的解法

如第6.1节所示,为了解初值问题
d y d t = − y + u 3 ( t ) , y ( 0 ) = 2 , \frac{dy}{dt} = -y + u_3(t), \quad y(0) = 2, dtdy=y+u3(t),y(0)=2,
我们首先对微分方程的两边进行拉普拉斯变换(并利用拉普拉斯变换的线性性质),得到:
L ( d y d t ) = − L [ y ] + L [ u 3 ] . \mathcal{L} \left( \frac{dy}{dt} \right) = -\mathcal{L}[y] + \mathcal{L}[u_3]. L(dtdy)=L[y]+L[u3].

使用导数的拉普拉斯变换规则和我们对 L [ u 3 ] = e − 3 s s L[u_3] = \frac{e^{-3s}}{s} L[u3]=se3s 的计算,我们得到:
s L [ y ] − y ( 0 ) = − L [ y ] + e − 3 s s . s \mathcal{L}[y] - y(0) = -\mathcal{L}[y] + \frac{e^{-3s}}{s}. sL[y]y(0)=L[y]+se3s.

代入 y ( 0 ) = 2 y(0) = 2 y(0)=2 并解出 L [ y ] \mathcal{L}[y] L[y] 得到:
L [ y ] = 2 s + 1 + e − 3 s s ( s + 1 ) . \mathcal{L}[y] = \frac{2}{s + 1} + \frac{e^{-3s}}{s(s + 1)}. L[y]=s+12+s(s+1)e3s.

因此,解为:
y = L − 1 ( 2 s + 1 ) + L − 1 ( e − 3 s s ( s + 1 ) ) . y = \mathcal{L}^{-1} \left( \frac{2}{s + 1} \right) + \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s(s + 1)} \right). y=L1(s+12)+L1(s(s+1)e3s).

现在:
L − 1 ( 2 s + 1 ) = 2 e − t , \mathcal{L}^{-1} \left( \frac{2}{s + 1} \right) = 2e^{-t}, L1(s+12)=2et,
但要计算:
L − 1 ( e − 3 s s ( s + 1 ) ) , \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s(s + 1)} \right), L1(s(s+1)e3s),
我们需要另一种计算拉普拉斯变换的规则。
在这里插入图片描述

t t t 轴上平移原点

给定一个函数 f ( t ) f(t) f(t),假设我们希望考虑一个函数 g ( t ) g(t) g(t),它与函数 f ( t ) f(t) f(t) 相同,但时间 t = 0 t = 0 t=0 对于 f f f 对应于某个稍后的时间,例如 t = a t = a t=a,对于 g g g。对于时间 t < a t < a t<a,我们让 g ( t ) = 0 g(t) = 0 g(t)=0。(所以 g g g f f f 相同,只是 g g g 在时间 t = a t = a t=a 时“开启”。)一个高效的表示 g ( t ) g(t) g(t) 的方法是:
g ( t ) = u a ( t ) f ( t − a ) . g(t) = u_a(t) f(t - a). g(t)=ua(t)f(ta).

注意:
g ( a ) = u a ( a ) f ( a − a ) = f ( 0 ) , g(a) = u_a(a) f(a - a) = f(0), g(a)=ua(a)f(aa)=f(0),
并且,如果 b > 0 b > 0 b>0
g ( a + b ) = u a ( a + b ) f ( b ) = f ( b ) , g(a + b) = u_a(a + b) f(b) = f(b), g(a+b)=ua(a+b)f(b)=f(b),
正如所期望的那样。例如,如果 f ( t ) = e − t f(t) = e^{-t} f(t)=et a = 3 a = 3 a=3,那么 g ( t ) = u 3 ( t ) e − ( t − 3 ) g(t) = u_3(t) e^{-(t - 3)} g(t)=u3(t)e(t3)(见图6.6 和图6.7)。
在这里插入图片描述

计算 g ( t ) g(t) g(t) 的拉普拉斯变换

为了计算 g ( t ) g(t) g(t) 的拉普拉斯变换,我们回到定义:
L [ g ] = ∫ 0 ∞ g ( t ) e − s t   d t . \mathcal{L}[g] = \int_{0}^{\infty} g(t) e^{-st} \, dt. L[g]=0g(t)estdt.

利用 g ( t ) = 0 g(t) = 0 g(t)=0 对于 t < a t < a t<a,以及 g ( t ) = f ( t − a ) g(t) = f(t - a) g(t)=f(ta) 对于 t ≥ a t \geq a ta,我们得到:
L [ g ] = ∫ a ∞ f ( t − a ) e − s t   d t . \mathcal{L}[g] = \int_{a}^{\infty} f(t - a) e^{-st} \, dt. L[g]=af(ta)estdt.

在积分中使用 u u u 代换,即 u = t − a u = t - a u=ta,得到:
L [ g ] = ∫ 0 ∞ f ( u ) e − s ( u + a )   d u . \mathcal{L}[g] = \int_{0}^{\infty} f(u) e^{-s(u + a)} \, du. L[g]=0f(u)es(u+a)du.

将指数项拆分:
L [ g ] = e − s a ∫ 0 ∞ f ( u ) e − s u   d u = e − s a L [ f ] = e − s a F ( s ) . \mathcal{L}[g] = e^{-sa} \int_{0}^{\infty} f(u) e^{-su} \, du = e^{-sa} \mathcal{L}[f] = e^{-sa} F(s). L[g]=esa0f(u)esudu=esaL[f]=esaF(s).

因此,我们可以将 g ( t ) = u a ( t ) f ( t − a ) g(t) = u_a(t) f(t - a) g(t)=ua(t)f(ta) 的拉普拉斯变换表示为 f ( t ) f(t) f(t) 的拉普拉斯变换的形式:

平移 t t t 轴上的原点

如果 L [ f ] = F ( s ) \mathcal{L}[f] = F(s) L[f]=F(s),则:
L [ u a ( t ) f ( t − a ) ] = e − a s F ( s ) . \mathcal{L}[u_a(t) f(t - a)] = e^{-as} F(s). L[ua(t)f(ta)]=easF(s).

(这个规则和我们为拉普拉斯变换制定的其他规则可以在第626页的表格中找到。)

对于刚才的例子,如果 g ( t ) = u 3 ( t ) e − ( t − 3 ) g(t) = u_3(t) e^{-(t - 3)} g(t)=u3(t)e(t3),那么 g ( t ) g(t) g(t) 的拉普拉斯变换是:
L [ g ] = e − 3 s L [ e − t ] = e − 3 s 1 s + 1 . \mathcal{L}[g] = e^{-3s} \mathcal{L}[e^{-t}] = e^{-3s} \frac{1}{s + 1}. L[g]=e3sL[et]=e3ss+11.

初值问题的完成

对于初值问题:
d y d t = − y + u 3 ( t ) , y ( 0 ) = 2 , \frac{dy}{dt} = -y + u_3(t), \quad y(0) = 2, dtdy=y+u3(t),y(0)=2,
我们已经展示了
y = L − 1 ( 2 s + 1 ) + L − 1 ( e − 3 s s ( s + 1 ) ) . y = \mathcal{L}^{-1} \left( \frac{2}{s + 1} \right) + \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s(s + 1)} \right). y=L1(s+12)+L1(s(s+1)e3s).

使用部分分式分解,我们将
1 s ( s + 1 ) = 1 s − 1 s + 1 \frac{1}{s(s + 1)} = \frac{1}{s} - \frac{1}{s + 1} s(s+1)1=s1s+11
表示为
L − 1 ( e − 3 s s ( s + 1 ) ) = L − 1 ( e − 3 s s ) − L − 1 ( e − 3 s s + 1 ) . \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s(s + 1)} \right) = \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s} \right) - \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s + 1} \right). L1(s(s+1)e3s)=L1(se3s)L1(s+1e3s).

我们知道
L − 1 ( e − 3 s s ) = u 3 ( t ) , \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s} \right) = u_3(t), L1(se3s)=u3(t),

L − 1 ( e − 3 s s + 1 ) = u 3 ( t ) e − ( t − 3 ) . \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s + 1} \right) = u_3(t) e^{-(t - 3)}. L1(s+1e3s)=u3(t)e(t3).

因此,
L − 1 ( e − 3 s s ( s + 1 ) ) = u 3 ( t ) − u 3 ( t ) e − ( t − 3 ) . \mathcal{L}^{-1} \left( \frac{e^{-3s}}{s(s + 1)} \right) = u_3(t) - u_3(t) e^{-(t - 3)}. L1(s(s+1)e3s)=u3(t)u3(t)e(t3).

所以解为:
y ( t ) = 2 e − t + u 3 ( t ) ( 1 − e − ( t − 3 ) ) . y(t) = 2e^{-t} + u_3(t) \left(1 - e^{-(t - 3)}\right). y(t)=2et+u3(t)(1e(t3)).

注意,第二项仅在 t > 3 t > 3 t>3 时非零。也就是说,这一项在 u 3 ( t ) u_3(t) u3(t) 项在微分方程中“开启”时也“开启”(见图6.5)。

一个具有指数衰减电压源的 RC 电路

考虑图 6.8 中的 RC 电路,其中电压源为:
V ( t ) = 2 u 4 ( t ) e − ( t − 4 ) . V(t) = 2u_4(t)e^{-(t-4)}. V(t)=2u4(t)e(t4).

电压源在 t = 4 t = 4 t=4 时以电压 2 开启,然后随着时间的增加而指数衰减(见图 6.9)。

电容器两端电压 v c v_c vc 的微分方程为:
R C d v c d t + v c = V ( t ) . RC \frac{d v_c}{dt} + v_c = V(t). RCdtdvc+vc=V(t).

假设电容器的初始电压为 v c ( 0 ) = 5 v_c(0) = 5 vc(0)=5。取(不现实的)值 R = 1 R = 1 R=1 C = 1 3 C = \frac{1}{3} C=31,并使用上述给定的 V ( t ) V(t) V(t),我们得到初值问题:
1 3 d v c d t + v c = 2 u 4 ( t ) e − ( t − 4 ) , v c ( 0 ) = 5. \frac{1}{3} \frac{d v_c}{dt} + v_c = 2u_4(t)e^{-(t-4)}, \quad v_c(0) = 5. 31dtdvc+vc=2u4(t)e(t4),vc(0)=5.
在这里插入图片描述
将两边乘以 3 并将 v c v_c vc 项移到右侧,得到:
d v c d t = − 3 v c + 6 u 4 ( t ) e − ( t − 4 ) , v c ( 0 ) = 5. \frac{d v_c}{dt} = -3 v_c + 6 u_4(t) e^{-(t-4)}, \quad v_c(0) = 5. dtdvc=3vc+6u4(t)e(t4),vc(0)=5.

定性分析

我们可以将这个微分方程重新写成:
d v c d t = { − 3 v c , if  t < 4 , − 3 v c + 6 e − ( t − 4 ) , if  t ≥ 4. \frac{d v_c}{dt} = \begin{cases} -3 v_c, & \text{if } t < 4, \\ -3 v_c + 6 e^{-(t-4)}, & \text{if } t \geq 4. \end{cases} dtdvc={3vc,3vc+6e(t4),if t<4,if t4.

对于 0 ≤ t < 4 0 \leq t < 4 0t<4,初始条件 v c ( 0 ) = 5 v_c(0) = 5 vc(0)=5 的解是 v c ( t ) = 5 e − 3 t v_c(t) = 5 e^{-3t} vc(t)=5e3t。这个解随着 t t t 的增加迅速减小到 v c = 0 v_c = 0 vc=0。对于 t ≥ 4 t \geq 4 t4,正项 6 e − ( t − 4 ) 6 e^{-(t-4)} 6e(t4) 使得接近 v c = 0 v_c = 0 vc=0 的解增大。然而,由于 6 e − ( t − 4 ) 6 e^{-(t-4)} 6e(t4) 随着 t t t 的增加趋向于零,解最终会趋向于零。因此,我们预计初值问题的解在 0 ≤ t < 4 0 \leq t < 4 0t<4 时会迅速减小到 v c = 0 v_c = 0 vc=0,在 t t t 略大于 4 时增大,然后随着 t t t 的增加再次减小到零。这种行为得到了图 6.10 中斜率场和解的图形的验证。

在这里插入图片描述

使用拉普拉斯变换求解

从初值问题
d v c d t = − 3 v c + 6 u 4 ( t ) e − ( t − 4 ) , v c ( 0 ) = 5 \frac{d v_c}{dt} = -3 v_c + 6 u_4(t) e^{-(t-4)}, \quad v_c(0) = 5 dtdvc=3vc+6u4(t)e(t4),vc(0)=5
开始,我们对微分方程的两边取拉普拉斯变换,得到:
L ( d v c d t ) = − 3 L [ v c ] + 6 L [ u 4 ( t ) e − ( t − 4 ) ] . \mathcal{L} \left( \frac{d v_c}{dt} \right) = -3 \mathcal{L}[v_c] + 6 \mathcal{L}[u_4(t) e^{-(t-4)}]. L(dtdvc)=3L[vc]+6L[u4(t)e(t4)].

化简得到:
s L [ v c ] − v c ( 0 ) = − 3 L [ v c ] + 6 e − 4 s s + 1 . s \mathcal{L}[v_c] - v_c(0) = -3 \mathcal{L}[v_c] + 6 \frac{e^{-4s}}{s + 1}. sL[vc]vc(0)=3L[vc]+6s+1e4s.

代入初始条件 v c ( 0 ) = 5 v_c(0) = 5 vc(0)=5,我们得到:
s L [ v c ] − 5 = − 3 L [ v c ] + 6 e − 4 s s + 1 . s \mathcal{L}[v_c] - 5 = -3 \mathcal{L}[v_c] + 6 \frac{e^{-4s}}{s + 1}. sL[vc]5=3L[vc]+6s+1e4s.

解得:
( s + 3 ) L [ v c ] = 5 + 6 e − 4 s s + 1 . (s + 3) \mathcal{L}[v_c] = 5 + 6 \frac{e^{-4s}}{s + 1}. (s+3)L[vc]=5+6s+1e4s.

所以:
L [ v c ] = 5 s + 3 + 6 e − 4 s ( s + 1 ) ( s + 3 ) . \mathcal{L}[v_c] = \frac{5}{s + 3} + \frac{6 e^{-4s}}{(s + 1)(s + 3)}. L[vc]=s+35+(s+1)(s+3)6e4s.
我们现在需要计算逆拉普拉斯变换:
v c ( t ) = L − 1 ( 5 s + 3 ) + L − 1 ( 6 e − 4 s ( s + 1 ) ( s + 3 ) ) . v_c(t) = \mathcal{L}^{-1} \left( \frac{5}{s + 3} \right) + \mathcal{L}^{-1} \left( \frac{6 e^{-4s}}{(s + 1)(s + 3)} \right). vc(t)=L1(s+35)+L1((s+1)(s+3)6e4s).

首先:
L − 1 ( 5 s + 3 ) = 5 e − 3 t . \mathcal{L}^{-1} \left( \frac{5}{s + 3} \right) = 5 e^{-3t}. L1(s+35)=5e3t.

对于第二项:
L − 1 ( 6 e − 4 s ( s + 1 ) ( s + 3 ) ) \mathcal{L}^{-1} \left( \frac{6 e^{-4s}}{(s + 1)(s + 3)} \right) L1((s+1)(s+3)6e4s)
使用时间平移定理,先求解
L − 1 ( 6 ( s + 1 ) ( s + 3 ) ) . \mathcal{L}^{-1} \left( \frac{6}{(s + 1)(s + 3)} \right). L1((s+1)(s+3)6).

我们将其分解为部分分式:
6 ( s + 1 ) ( s + 3 ) = A s + 1 + B s + 3 . \frac{6}{(s + 1)(s + 3)} = \frac{A}{s + 1} + \frac{B}{s + 3}. (s+1)(s+3)6=s+1A+s+3B.

解得 A = 3 A = 3 A=3 B = − 3 B = -3 B=3,因此:
6 ( s + 1 ) ( s + 3 ) = 3 s + 1 − 3 s + 3 . \frac{6}{(s + 1)(s + 3)} = \frac{3}{s + 1} - \frac{3}{s + 3}. (s+1)(s+3)6=s+13s+33.

所以:
L − 1 ( 6 ( s + 1 ) ( s + 3 ) ) = 3 e − t − 3 e − 3 t . \mathcal{L}^{-1} \left( \frac{6}{(s + 1)(s + 3)} \right) = 3 e^{-t} - 3 e^{-3t}. L1((s+1)(s+3)6)=3et3e3t.

由于平移定理:
L − 1 ( 6 e − 4 s ( s + 1 ) ( s + 3 ) ) = u 4 ( t ) [ 3 e − ( t − 4 ) − 3 e − ( t − 4 ) − 2 ] . \mathcal{L}^{-1} \left( \frac{6 e^{-4s}}{(s + 1)(s + 3)} \right) = u_4(t) \left[ 3 e^{-(t - 4)} - 3 e^{-(t - 4) - 2} \right]. L1((s+1)(s+3)6e4s)=u4(t)[3e(t4)3e(t4)2].

结合得到:
v c ( t ) = 5 e − 3 t + u 4 ( t ) [ 3 e − ( t − 4 ) − 3 e − ( t − 6 ) ] . v_c(t) = 5 e^{-3t} + u_4(t) \left[ 3 e^{-(t - 4)} - 3 e^{-(t - 6)} \right]. vc(t)=5e3t+u4(t)[3e(t4)3e(t6)].

代入 v c ( 0 ) = 5 v_c(0) = 5 vc(0)=5 并解出 L [ v c ] \mathcal{L}[v_c] L[vc]

得到:
L [ v c ] = 5 s + 3 + 6 e − 4 s ( s + 3 ) ( s + 1 ) . \mathcal{L}[v_c] = \frac{5}{s + 3} + \frac{6 e^{-4s}}{(s + 3)(s + 1)}. L[vc]=s+35+(s+3)(s+1)6e4s.

因此,
v c ( t ) = L − 1 ( 5 s + 3 ) + L − 1 ( 6 e − 4 s ( s + 3 ) ( s + 1 ) ) . v_c(t) = \mathcal{L}^{-1} \left( \frac{5}{s + 3} \right) + \mathcal{L}^{-1} \left( \frac{6 e^{-4s}}{(s + 3)(s + 1)} \right). vc(t)=L1(s+35)+L1((s+3)(s+1)6e4s).

使用部分分式分解:
6 ( s + 3 ) ( s + 1 ) = − 3 s + 3 + 3 s + 1 . \frac{6}{(s + 3)(s + 1)} = \frac{-3}{s + 3} + \frac{3}{s + 1}. (s+3)(s+1)6=s+33+s+13.

所以:
6 e − 4 s ( s + 3 ) ( s + 1 ) = − 3 e − 4 s s + 3 + 3 e − 4 s s + 1 . \frac{6 e^{-4s}}{(s + 3)(s + 1)} = -3 \frac{e^{-4s}}{s + 3} + 3 \frac{e^{-4s}}{s + 1}. (s+3)(s+1)6e4s=3s+3e4s+3s+1e4s.

因此:
v c ( t ) = L − 1 ( 5 s + 3 ) − 3 L − 1 ( e − 4 s s + 3 ) + 3 L − 1 ( e − 4 s s + 1 ) . v_c(t) = \mathcal{L}^{-1} \left( \frac{5}{s + 3} \right) - 3 \mathcal{L}^{-1} \left( \frac{e^{-4s}}{s + 3} \right) + 3 \mathcal{L}^{-1} \left( \frac{e^{-4s}}{s + 1} \right). vc(t)=L1(s+35)3L1(s+3e4s)+3L1(s+1e4s).

从而解为:
v c ( t ) = 5 e − 3 t − 3 u 4 ( t ) e − 3 ( t − 4 ) + 3 u 4 ( t ) e − ( t − 4 ) . v_c(t) = 5 e^{-3t} - 3 u_4(t) e^{-3(t - 4)} + 3 u_4(t) e^{-(t - 4)}. vc(t)=5e3t3u4(t)e3(t4)+3u4(t)e(t4).

对于 0 ≤ t < 4 0 \leq t < 4 0t<4,解为:
v c ( t ) = 5 e − 3 t , v_c(t) = 5 e^{-3t}, vc(t)=5e3t,
该解迅速减小到零。对于 t ≥ 4 t \geq 4 t4,解为:
v c ( t ) = 5 e − 3 t − 3 e − 3 ( t − 4 ) + 3 e − ( t − 4 ) . v_c(t) = 5 e^{-3t} - 3 e^{-3(t - 4)} + 3 e^{-(t - 4)}. vc(t)=5e3t3e3(t4)+3e(t4).

每一项随着 t t t 的增加都趋向于零,如预测所示(见图 6.10)。

  • 13
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sobolev001

你的鼓励是我持续工作的最大动!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值