【源码】贝叶斯变化点检测与时间序列分解

在这里插入图片描述

BEAST(突变、季节性和趋势的贝叶斯估计器)是一种快速、通用的贝叶斯模型平均算法,用于将时间序列或1D序列数据分解为单个组件,例如突变、趋势和周期/季节性变化,如Zhao等人(2019)所述。BEAST可用于变化点检测(即断点或结构中断)、非线性趋势分析、时间序列分解和时间序列分割

BEAST是用C/C++实现的,但可以从R和Matlab访问。

BEAST (Bayesian Estimator of Abrupt change, Seasonality, and Trend) is a fast, generic Bayesian model averaging algorithm to decompose time series or 1D sequential data into individual components, such as abrupt changes, trends, and periodic/seasonal variations, as described in Zhao et al. (2019). BEAST is useful for changepoint detection (i.e., breakpoints or structural breaks), nonlinear trend analysis, time series decomposition, and time series segmentation

BEAST was impemented in C/C++ but accessible from R and Matlab.

参考文献:

Zhao, K., Wulder, M. A., Hu, T., Bright, R., Wu, Q., Qin, H., Li, Y., Toman, E., Mallick B., Zhang, X., & Brown, M. (2019). Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm. Remote Sensing of Environment, 232, 111181. (the BEAST paper)

Zhao, K., Valle, D., Popescu, S., Zhang, X. and Mallick, B., 2013. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sensing of Environment, 132, pp.102-119. (the mcmc sampler used for BEAST)

Hu, T., Toman, E.M., Chen, G., Shao, G., Zhou, Y., Li, Y., Zhao, K. and Feng, Y., 2021. Mapping fine-scale human disturbances in a working landscape with Landsat time series on Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 176, pp.250-261. (an application paper)

下载地址:

https://url92.ctfile.com/f/1850492-562577843-3ecb9d

(访问密码:3660)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值