经济增长模型

Douglas生产函数

Q ( t ) , K ( t ) , L ( t ) Q(t),K(t) ,L(t) Q(t),K(t),L(t)分别表示某一地区或部门在时刻t的产值、资金和劳动
力,它们的关系可以一般地记作
Q ( t ) = F ( K ( t ) , L ( t ) ) Q(t)=F(K(t), L(t)) Q(t)=F(K(t),L(t))
z = Q / L , y = K / L z=Q / L, \quad y=K / L z=Q/L,y=K/L,z:产值,y:投资
在这里插入图片描述
z = c g ( y ) , g ( y ) = y a , 0 < α < 1 z=c g(y), \quad g(y)=y^{a}, \quad 0<\alpha<1 z=cg(y),g(y)=ya,0<α<1
Q = c K α L 1 − α , 0 < α < 1 Q=c K^{\alpha} L^{1-\alpha}, \quad 0<\alpha<1 Q=cKαL1α,0<α<1(Cobb-Douglas生产函数)

∂ Q ∂ K , ∂ Q ∂ L > 0 , ∂ 2 Q ∂ K 2 , ∂ 2 Q ∂ L 2 < 0 \frac{\partial Q}{\partial K}, \frac{\partial Q}{\partial L}>0, \quad \frac{\partial^{2} Q}{\partial K^{2}}, \frac{\partial^{2} Q}{\partial L^{2}}<0 KQ,LQ>0,K22Q,L22Q<0
K Q K Q = α , L Q L Q = 1 − α , K Q K + L Q L = Q \frac{K Q_{K}}{Q}=\alpha, \quad \frac{L Q_{L}}{Q}=1-\alpha, \quad K Q_{K}+L Q_{L}=Q QKQK=α,QLQL=1α,KQK+LQL=Q
α \alpha α是资金在产值中占有的份额, 1 − α 1-\alpha 1α是劳动力在产值中占有的份额. 于是 α \alpha α的大小直接反映了资金、劳动力二者对于创造产值的轻重
关系
Q = c K α L β , 0 < α , β < 1 Q=c K^{\alpha} L^{\beta}, \quad 0<\alpha, \beta<1 Q=cKαLβ,0<α,β<1

投资增长率与产值成正比,比例系数 λ \lambda λ>0, 即用一定比例扩大再生产;
d K d t = λ Q , λ > 0 \frac{\mathrm{d} K}{\mathrm{d} t}=\lambda Q, \lambda>0 dtdK=λQ,λ>0
劳动力的相对增长率为常数 μ \mu μ, , μ \mu μ 可以是负数,表示劳动力减少.
d L d t = μ L \frac{\mathrm{d} L}{\mathrm{d} t}=\mu L dtdL=μL

d K d t = λ f 0 L y α \frac{\mathrm{d} K}{\mathrm{d} t}=\lambda f_{0} L y^{\alpha} dtdK=λf0Lyα
d K d t = L d y d t + μ L y \frac{\mathrm{d} K}{\mathrm{d} t}=L \frac{\mathrm{d} y}{\mathrm{d} t}+\mu L y dtdK=Ldtdy+μLy
→ d y d t + μ y = f 0 λ y α \rightarrow\frac{\mathrm{d} y}{\mathrm{d} t}+\mu y=f_{0} \lambda y^{\alpha} dtdy+μy=f0λyα
→ y ( t ) = ( f 0 λ μ + ( y 0 1 − α − f 0 λ μ ) e − ( 1 − α ) μ t ) 1 / 1 − α \rightarrow y(t)=\left(\frac{f_{0} \lambda}{\mu}+\left(y_{0}^{1-\alpha}-\frac{f_{0} \lambda}{\mu}\right) \mathrm{e}^{-(1-\alpha) \mu t}\right)^{1 / 1-\alpha} y(t)=(μf0λ+(y01αμf0λ)e(1α)μt)1/1α
y 0 = K 0 / L 0 , Q 0 = f 0 K 0 α L 0 1 − α , K ˙ 0 = λ Q 0 y_{0}=K_{0} / L_{0}, Q_{0}=f_{0} K_{0}^{\alpha} L_{0}^{1-\alpha}, \dot{K}_{0}=\lambda Q_{0} y0=K0/L0,Q0=f0K0αL01α,K˙0=λQ0
→ y ( t ) = { f 0 λ μ [ 1 − ( 1 − μ K 0 K ˙ 0 ) e − ( 1 − α ) μ t ] } 1 1 − α \rightarrow y(t)=\left\{\frac{f_0 \lambda}{\mu}\left[1-\left(1-\mu \frac{K_{0}}{\dot{K}_{0}}\right) e^{-(1-\alpha) \mu t}\right]\right\}^{\frac{1}{1-\alpha}} y(t)={μf0λ[1(1μK˙0K0)e(1α)μt]}1α1

d y d t + μ y = c λ y α ( 0 < α < 1 ) \frac{d y}{d t}+\mu y=c \lambda y^{\alpha}(0<\alpha<1) dtdy+μy=cλyα(0<α<1)
解析解:
y ( t ) = { c λ μ [ 1 − ( 1 − μ K 0 K ˙ 0 ) e − ( 1 − α ) μ t ] } 1 1 − α y(t)=\left\{\frac{c \lambda}{\mu}\left[1-\left(1-\mu \frac{K_{0}}{\dot{K}_{0}}\right) e^{-(1-\alpha) \mu t}\right]\right\}^{\frac{1}{1-\alpha}} y(t)={μcλ[1(1μK˙0K0)e(1α)μt]}1α1

Bernoulli方程

d y d x + p ( x ) y = q ( x ) y n \frac{\mathrm{d} y}{\mathrm{d} x}+p(x) y=q(x) y^{n} dxdy+p(x)y=q(x)yn
两边除以 y n y^n yn
z = y 1 − n z=y^{1-n} z=y1n
d z d x + ( 1 − n ) p ( x ) z = ( 1 − n ) q ( x ) \frac{\mathrm{d} z}{\mathrm{d} x}+(1-n) p(x) z=(1-n) q(x) dxdz+(1n)p(x)z=(1n)q(x)

d y d t + μ y = f 0 λ y α \frac{\mathrm{d} y}{\mathrm{d} t}+\mu y=f_{0} \lambda y^{\alpha} dtdy+μy=f0λyα
→ d y d t ∗ y − α + μ y 1 − α = f 0 λ \rightarrow\frac{\mathrm{d} y}{\mathrm{d} t}*y^{-\alpha}+\mu y^{1-\alpha}=f_{0} \lambda dtdyyα+μy1α=f0λ
y 1 − α = z y^{1-\alpha}=z y1α=z
d z d t + μ ∗ z = f 0 λ \frac{dz}{dt}+\mu*z=f_{0} \lambda dtdz+μz=f0λ

Y ( K , L ) = K α ⋅ L 1 − α Y(K, L)=K^{\alpha} \cdot L^{1-\alpha} Y(K,L)=KαL1α
d Y ( K 0 , L ) d L = ( 1 − α ) ⋅ K 0 α ⋅ L − α \frac{d Y\left(K_{0}, L\right)}{d L}=(1-\alpha) \cdot K_{0}^{\alpha} \cdot L^{-\alpha} dLdY(K0,L)=(1α)K0αLα

syms L K0 alpha
f(L, K0, alpha) = K0(alpha)*L(1-alpha);
diff(f, L)

在这里插入图片描述

alpha = 0.5;
K0 = 1;
% Note that we have 1 symbolic variable now, the others are numbers
syms L
f(L) = K0(alpha)*L(1-alpha);
f_diff_L = diff(f, L);
% Start figure
figure()
% fplot plots a function with one symbolic variable
fplot(f_diff_L, [0.1, 15])
title(‘Marginal Product of Labor, with K=1, alpha=0.5’)
ylabel({‘Marginal Product of additional labor’ ‘at different level of current L’})
xlabel(‘Current level of Labor’)
grid on

!在这里插入图片描述](https://img-blog.csdnimg.cn/20200327203850325.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MjgzMDM2NQ==,size_16,color_FFFFFF,t_70)

alpha = 0.5;
k0a = 1;
k0b = 2;
k0c = 3;
K0_vec = [k0a k0b k0c];
% Start figure
figure()
% Hold figure
hold on;
for K0 = K0_vec
% Note that we have 1 symbolic variable now, the others are numbers
syms L
f(L) = K0(alpha)*L(1-alpha);
f_diff_L = diff(f, L);
% fplot plots a function with one symbolic variable
fplot(f_diff_L, [0.1, 15])
end
grid on
legend([‘k=’,num2str(k0a)],…
[‘k=’,num2str(k0b)],…
[‘k=’,num2str(k0c)]);
title(‘Marginal Product of Labor with different Capital Levels, alpha=0.5’)
ylabel({‘Marginal Product of additional labor’})
xlabel(‘Current level of Labor’)

在这里插入图片描述

% Define parameters and K0
alpha = 0.5;
beta = 0.5;
L0 = 1;
K = 1;
Y_at_L0 = (Kalpha)*(L0beta);
x_max = 5;
x_min = 0;
% a vector of h vectors
h_vec = [0.01, 1, 3];
% Loop over h, generate a plot for each rise over run as h changes
figure();
hold on;
% Legend
Legend_list = {};
% Plot as before the production function as a function of K
syms L
f(L) = (Kalpha)*(Lbeta);
fplot(f, [x_min, x_max], ‘LineWidth’, 2);
% Add to Legend List
legend_counter = 1;
Legend_list{1} = [‘Actual Line’];
% Plot the other lines
for h=h_vec
f_l0 = (Kalpha)*(L0beta);
f_l0_plus_h = (Kalpha)*((L0+h)beta);
2
% Current approximating line slope, based on formula above
cur_slope = (f_l0_plus_h - f_l0)/h;
% Current approximating line y-intercept, we require line to cross (K0, Y_at_K0), and know slope already
cur_y_intercept = Y_at_L0 - cur_slopeL0;
% Plot each of the approximating Slopes
syms L
f(L) = cur_y_intercept + cur_slope
L;
fplot(f, [x_min, x_max], ‘–’);
plot([h+L0, h+L0], ylim, ‘-k’);
% Legend
legend_counter = 1 + legend_counter;
Legend_list{legend_counter} = [‘h=’ num2str(h) ‘, slope=’ num2str(cur_slope)];
end
grid on;
ylabel(‘Cobb-Douglas Output’);
xlabel(‘Labor’);
title({‘Tangent line as h gets smaller’…
,[‘Output with Increasing Labor, fixed Capital=’ num2str(K)]})
legend(Legend_list,‘Location’, ‘NW’,‘Orientation’ ,‘Vertical’ );

在这里插入图片描述

% a bigger evenly spaced vector of h
h_grid_count = 100;
h = linspace(0, 15, h_grid_count);
% output at f_x0_plus_h
x0_plus_h = L0+h;
f_x0 = (Kalpha)*(L0.beta);
f_x0_plus_h = (Kalpha)*((x0_plus_h).beta);
% average output per additional worker
f_prime_x0 = (f_x0_plus_h - f_x0)./h;
3
% Store Results in a Table
T = table(h’, x0_plus_h’, f_x0_plus_h’, f_prime_x0’);
T.Properties.VariableNames = {‘h’, ‘x0_plus_h’, ‘f_x0_plus_h’, ‘f_prime_x0’};
% Graph
close all;
figure();
plot(h, f_prime_x0);
grid on;
ylabel(‘Average output increase per unit of labor increase’)
xlabel(‘h=increases in labor from L=2 (K=1 fixed)’)
title(‘Derivative Approximation as h gets small, CD Production’)

在这里插入图片描述

d y d t + μ y = f 0 λ y α \frac{\mathrm{d} y}{\mathrm{d} t}+\mu y=f_{0} \lambda y^{\alpha} dtdy+μy=f0λyα
→ d y d t ∗ y − α + μ y 1 − α = f 0 λ \rightarrow\frac{\mathrm{d} y}{\mathrm{d} t}*y^{-\alpha}+\mu y^{1-\alpha}=f_{0} \lambda dtdyyα+μy1α=f0λ
y 1 − α = z y^{1-\alpha}=z y1α=z
d z d t + μ ∗ z = f 0 λ \frac{dz}{dt}+\mu*z=f_{0} \lambda dtdz+μz=f0λ

α = 0.5 , K 0 = 1 , L 0 = 1 , λ = 1 , μ = 1 , f 0 = 1 \alpha=0.5,K_0=1,L_0=1,\lambda=1,\mu=1,f_0=1 α=0.5,K0=1,L0=1,λ=1,μ=1,f0=1
d L d t = L \frac{dL}{dt}=L dtdL=L
d z d t + z = 1 , z 0 = 1 \frac{dz}{dt}+z=1,z_0=1 dtdz+z=1,z0=1

tspan = [0 100];
y0 = 1;
[t,y] = ode45(@(t,y) 1-y, tspan, y0);
plot(t,y,’-o’)
在这里插入图片描述

tspan = [0 100];
y0 = 1;
[t,y] = ode45(@(t,y) 1+y, tspan, y0);
plot(t,y,’-o’)

在这里插入图片描述
α = 0.5 , K 0 = 1 , L 0 = 1 , λ = 1 , μ = − 1 , f 0 = 1 \alpha=0.5,K_0=1,L_0=1,\lambda=1,\mu=-1,f_0=1 α=0.5,K0=1,L0=1,λ=1,μ=1,f0=1
d L d t = L \frac{dL}{dt}=L dtdL=L
d z d t − z = 1 , z 0 = 1 \frac{dz}{dt}-z=1,z_0=1 dtdzz=1,z0=1

tspan = [0 100];

tspan = [0 10];
在这里插入图片描述

tz
0.00010.0004
0.00010.0005
0.00010.0006
0.00020.0008
0.00020.0011
0.00020.0014
0.00020.0018
0.00030.0024
0.00030.0030
0.00030.0039
0.00030.0051
0.00040.0066
0.00040.0085
0.00040.0109
0.00040.0140
0.00050.0180
0.00050.0232
0.00050.0298
0.00050.0382
0.00060.0491
0.00060.0631
0.00060.0811
0.00060.1041
0.00070.1337
0.00070.1717
0.00070.2205
0.00070.2832
0.00080.3636
0.00080.4670
0.00080.5996
0.00080.7699
0.00090.9887
0.00091.2697
0.00091.6302
0.00092.0931
0.00102.6877
0.00103.0412
0.00103.4412
0.00103.8938
0.00104.4059
  • 4
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值