【近万字】分数傅里叶变换课程学习笔记

学习自“课堂在线”平台,北京理工大学陶然教授的课程视频,讲解的非常详细全面,数学公式推导都有,以下为学习笔记,仅记录要点部分。

注:学习此课程,按重要程度排序,需要有信号与系统、数字信号处理、随机信号分析、矩阵论等课程的基础。

绪论

傅里叶变换处理平稳信号、线性时不变系统。但是当信号出现时变、非平稳特性时,传统傅里叶变换难以处理。
分数阶傅里叶变换开辟出时域、频域之间新的分数域,可以在这里分析非平稳信号和线性时变系统。

注:平稳指的是宽平稳,严格的数学定义是信号的自相关函数取数学期望,其值不随时间变化,仅与时间间隔有关。简单来说就是信号的统计量与时间起点无关。
在这里插入图片描述
横坐标为时间、纵坐标为频率。传统傅里叶变换相当于把信号旋转 π / 2 \pi/2 π/2,而分数傅里叶变换可以旋转任意角度,是对传统傅里叶变换的一个拓展。

传统傅里叶变换的基函数是正弦函数,而分数傅里叶变换的基函数是chirp函数。chirp是一个典型的非平稳信号。

分数傅里叶变换定义

传统的傅里叶变换,定义为积分核形式,如下图第一个公式所示,积分核为 exp ⁡ ( − j u t ) \exp(-jut) exp(jut)
而另一种定义形式基于Hermite特征函数,如下图蓝色公式所示,其中特征值为 e − j n π 2 e^{-jn\frac{\pi}{2}} ejn2π,特征函数为 ϕ n ( u ) \phi_n(u) ϕn(u)
在这里插入图片描述
将特征值一般化,即 e − j n α e^{-jn\alpha} ejnα,其中 α = p π 2 \alpha=p\frac{\pi}{2} α=p2π p p p称为阶数,于是得到分数傅里叶变换的特征函数定义形式。

此处省略大量数学推导……

将分数傅里叶变换的特征函数定义形式转换为积分核的表达形式,如下所示:
在这里插入图片描述
积分核为 exp ⁡ ( j cot ⁡ α 2 t 2 + j cot ⁡ α 2 u 2 + j t u sin ⁡ α ) \exp(\frac{j\cot\alpha}{2}t^2+\frac{j\cot\alpha}{2}u^2+\frac{jtu}{\sin\alpha}) exp(2jcotαt2+2jcotαu2+sinαjtu)。与传统傅里叶变换不同,分数傅里叶变换的积分核中包含平方项。

分数傅里叶变换的性质

可以证明,当阶数 p = 1 p=1 p=1时,分数傅里叶变换退化为传统傅里叶变换;当阶数 p = − 1 p=-1 p=1时,退化为传统逆傅里叶变换;当阶数 p = 0 p=0 p=0时,结果就是函数本身。
第三条证明中需要用到冲激函数的极限定义形式:
在这里插入图片描述
分数傅里叶变换满足可加性:
在这里插入图片描述
对函数做角度为 α \alpha α的分数傅里叶变换后,再做一次角度为 β \beta β的分数傅里叶变换,结果与直接做一次角度为 α + β \alpha+\beta α+β的分数傅里叶变换相同。

分数卷积与滤波

卷积定理

傅里叶变换的卷积定理为:两函数时域卷积等于频域相乘频域卷积等于时域相乘(除以 2 π 2\pi 2π
若信号为 x ( t ) x(t) x(t),通过一个线性时不变系统,其中该系统的冲激响应为 h ( t ) h(t) h(t),那么系统输出 y ( t ) = x ( t ) ∗ h ( t ) y(t)=x(t)*h(t) y(t)=x(t)h(t),其中 ∗ * 表示卷积符号。

X ( j ω ) X(j\omega) X(jω) H ( j ω ) H(j\omega) H(jω) Y ( j ω ) Y(j\omega) Y(jω)分别表示 x ( t ) x(t) x(t) h ( t ) h(t) h(t) y ( t ) y(t) y(t)的傅里叶变换,那么卷积定理可以表示成:
y ( t ) = h ( t ) ∗ x ( t ) Y ( j ω ) = H ( j ω ) X ( j ω ) y(t)=h(t)*x(t)\\ Y(j\omega)=H(j\omega)X(j\omega) y(t)=h(t)x(t)Y(jω)=H(jω)X(jω)

卷积的快速计算方法

一般计算卷积的方法,计算复杂度为 O ( N 2 ) O(N^2) O(N2),下面利用卷积定理,可以推导出使用快速傅里叶变换FFT将计算复杂度降低为 O ( N log ⁡ N ) O(N\log N) O(NlogN)的计算方法。
在这里插入图片描述
首先将两个函数使用FFT分别转换到频域,然后在频域相乘(对应时域卷积),对结果再做一个逆FFT,转换回时域,得出卷积结果。

分数卷积

X α ( j ω ) X^\alpha(j\omega) Xα(jω) H α ( j ω ) H^\alpha(j\omega) Hα(jω) Y α ( j ω ) Y^\alpha(j\omega) Yα(jω)分别表示 x ( t ) x(t) x(t) h ( t ) h(t) h(t) y ( t ) y(t) y(t)的分数傅里叶变换,参数均为 α \alpha α,定义分数卷积符号如下:
在这里插入图片描述
分数卷积的计算流程如下:
在这里插入图片描述
在这里插入图片描述
计算相当的复杂,尤其是 h ( t ) h(t) h(t)。于是考虑去除对 h ( t ) h(t) h(t)的两次fft操作,直接使用 h ^ ( t ) \hat{h}(t) h^(t)作为时域输入,得到第二种分数卷积的流程图:

在这里插入图片描述
注意 H α ( u ) H^\alpha(u) Hα(u) h ^ ( t ) \hat{h}(t) h^(t)的傅里叶变换。
在这里插入图片描述

在第一种卷积计算方法中, h ( t ) h(t) h(t)中包含 t 2 t^2 t2的指数项,因此, h ( t ) h(t) h(t)可以分解为一串调频率相同的chirp信号叠加,对应的系统称为一阶时变系统。

在第二种卷积计算方法中, h ^ ( t ) \hat{h}(t) h^(t)可以分解为一串正弦信号叠加,对应0阶时变系统,即时不变系统。可以理解为一个非平稳信号经过线性时不变系统。

还有第三种卷积方法:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

功率谱

对于随机信号,通常由功率谱描述。
首先介绍功率信号能量信号的概念。简单来说,功率信号就是信号的功率是一直存在但不为无限大,能量信号就是信号的总能量不是无限大的。注意,由于时间可以选取无限远,因此功率信号的能量是无限大的。功率信号的数学定义如下:
在这里插入图片描述
正弦信号就是功率信号。

此处省略随机信号分析的内容……

帕萨瓦尔定理在这里插入图片描述
证明了时域和频域能量守恒。

功率谱密度,简称功率谱定义如下:
在这里插入图片描述

维纳-辛钦定理
在这里插入图片描述
因此,可以通过计算相关函数来获得函数的功率谱。

分数功率谱

定义如下:
在这里插入图片描述
在这里插入图片描述

分数域采样与重建

分数域谱分析

分数域不发生频谱混叠的条件:
在这里插入图片描述

分数域采样后重建

在这里插入图片描述
利用奈奎斯特内插函数,可以得到重建后的时域表达式:
在这里插入图片描述

频域带通采样定理:

在这里插入图片描述

其中 Ω l \Omega_l Ωl表示信号最低频率, Ω h \Omega_h Ωh表示信号最高频率。在这里插入图片描述
表示向下取整。

带通重建公式:
在这里插入图片描述

分数域带通采样定理

在这里插入图片描述
带通重建公式:
在这里插入图片描述

离散FRFT快速算法

目前的离散算法主要包括两大类:
在这里插入图片描述
在这里插入图片描述
上述性质指的是可加性。
在这里插入图片描述
基于采样型DFRFT方法,我博客中单独有一篇文章(大致)解释了原理并实现了其代码:分数阶傅里叶变换(FrFT)详细原理与matlab代码实现

chirp信号检测与参数估计

由于分数傅里叶变换是基于chirp基函数的,因此该变换特别适用于chirp信号处理。chirp信号在特定参数的FRFT下,是一个冲激函数,易于被检测。

参数估计公式

在这里插入图片描述
当满足相位一致条件时,信号幅值最大,呈现出冲激状。
chirp信号的四个参数估计值在上图的最下方列出。
在实际检测中,需要搜索 α \alpha α u u u两个变量,找到信号最大峰值所在位置,据此估计出chirp信号的四个参数。

量纲归一化

在实际编程操作中,首先对量纲进行归一化:
在这里插入图片描述
S = T f s S=\sqrt{\frac{T}{f_s}} S=fsT ,时域除以 S S S,频域乘以 S S S,即可使时域和频域均变为 Δ x = T f s \Delta x=\sqrt{Tf_s} Δx=Tfs ,时宽带宽相等。
因为做了量纲归一化,因此在估计出调频率后要除以 S 2 S^2 S2,频率要除以 S S S才能得到真实的数值。
我有一篇博客讲了chirp信号检测与参数估值的具体实现,其中包括了相关的matlab代码:
基于分数阶傅里叶变换的chirp信号检测与参数估计(原理附代码)

后记

路漫漫其修远兮,分数傅里叶变换的内容还有很多,这次课程笔记就到这里(学的也不是很深入),以后如有工程需要,还会继续学习。

以上大部分内容(包括所有图片)来自于陶然老师的课程视频,仅供学习讨论使用,如有侵权作者将自行删除。

  • 15
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
傅立叶变换和复变函数是数学中非常重要的两个概念,可以应用于信号处理、图像处理、电路分析等领域。下面是一个关于傅立叶变换和复变函数的课程设计,希望能对您有所帮助。 课程设计题目:傅立叶变换和复变函数的应用 一、设计目的 通过本次设计,学生能够了解并掌握傅立叶变换和复变函数的基本概念、性质和应用,培养学生的分析问题和解决问题的能力。 二、设计内容和要求 1. 傅立叶变换的基本概念、性质和应用 - 傅立叶级数 - 傅立叶变换 - 傅立叶反变换 - 傅立叶变换的性质 - 傅立叶变换的应用(例如信号处理、图像处理等) 2. 复变函数的基本概念、性质和应用 - 复数和复平面 - 复变函数的定义 - 复变函数的导数和积分 - 解析函数和调和函数 - 应用(例如电路分析、流体力学等) 3. 综合应用 - 利用傅立叶变换和复变函数解决实际问题,例如信号处理、图像处理、电路分析等。 设计要求: 1. 设计时要注意从基本概念出发,逐步引入性质和应用。 2. 注重实例分析,突出傅立叶变换和复变函数在实际问题中的应用。 3. 要求学生掌握傅立叶变换和复变函数的基本概念、性质和应用,并能够独立解决实际问题。 三、设计步骤 1. 学生学习傅立叶变换和复变函数的基本概念、性质和应用。 2. 学生通过课堂练习、作业等方式掌握相关知识。 3. 学生分组完成一个综合应用的课程设计,包括问题分析、解决方案设计、计算结果和结论分析等环节。 4. 学生进行课堂汇报,讨论和总结。 四、评分标准 1. 设计内容是否全面、准确、深入。 2. 分析问题和解决问题的能力是否得到提升。 3. 解决实际问题的能力是否得到提升。 4. 课堂汇报表现和讨论质量。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值