深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测

本文介绍基于CNN的遥感卫星地图分类,利用EuroSAT数据集进行模型训练和预测,涵盖数据集构建、模型构建、训练、保存与加载。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI,今天给大家介绍一下深度学习实战46-基于CNN的遥感卫星地图智能分类,模型训练与预测。随着遥感技术和卫星图像获取能力的快速发展,卫星图像分类任务成为了计算机视觉研究中一个重要的挑战。为了促进这一领域的研究进展,EuroSAT数据集应运而生。本文将详细介绍EuroSAT项目,包括其背景、数据集构建流程、数据集特点以及在卫星图像分类任务中的应用。

目录
引言
数据集构建流程
数据集特点
卫星图像分类任务中的应用
遥感卫星地图数据加载
基于CNN的遥感卫星地图分类模型构建
卫星地图分类模型训练
卫星地图分类模型保存与加载
结论
在这里插入图片描述

引言

随着城市化和环境监测需求的增加,卫星图像分类成为了很多应用场景中的核心任务。然而,由于数据集的有限性和复杂性,导致该任务的挑战性提高。为了解决这个问题,EuroSAT项目被启动,旨在创建一个大规模、多类别的卫星图像数据集,以推动卫星图像分类算法的发展。

数据集构建流程

EuroSAT数据集的构建过程主要分为以下几个步骤:
&

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值