大模型的实践应用6-百度文心一言的基础模型ERNIE的详细介绍,与BERT模型的比较说明

这篇博客详细介绍了百度的ERNIE模型,与BERT的比较,强调ERNIE如何通过知识图谱增强语言理解。ERNIE在理解实体关系的任务上表现出色,而BERT擅长处理上下文和词汇关系。文章涵盖ERNIE的模型结构和训练方式,以及知识图谱在ERNIE中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,我是微学AI,今天给大家讲一下大模型的实践应用6-百度文心一言的基础模型ERNIE的详细介绍,与BERT模型的比较说明。在大规模语料库上预先训练的BERT等神经语言表示模型可以很好地从纯文本中捕获丰富的语义模式,并通过微调的方式一致地提高各种NLP任务的性能。然而,现有的预训练语言模型很少考虑融入知识图谱(KGs),知识图谱可以为语言理解提供丰富的结构化知识。我们认为知识图谱中的信息实体可以通过外部知识增强语言表示。在这篇论文中,我们利用大规模的文本语料库和知识图谱来训练一个增强的语言表示模型(ERNIE),它可以同时充分利用词汇、句法和知识信息。实验结果表明,ERNIE在各种知识驱动任务上都取得了显著的进步,同时在其他常见的NLP任务上,ERNIE也能与现有的BERT模型相媲美。
在这里插入图片描述

一、ERNIE和BERT的比较

首先,百度的ERNIE和BERT都是基于Transformer的预训练语言模型,但它们在模型架构和训练方式上有一些区别。

  1. 模型架构上的区别:

    • BERT是谷歌在2018年提出的预训练深度双向语言模型。BERT的特点是通过遮挡一部分输入词汇(Masked Language Model
近年来,国内外的大模型研究正处于飞速发展阶段。这些大模型通常指的是基于深度学习架构,特别是Transformer结构的预训练语言模型,如国内的通义千问(来自阿里云)、文心一言百度)、以及ERNIE系列;国外则有谷歌的BERT、GPT-3系列(包括更近期的GPT-4)、微软的Azure的BERT等。 大模型的主要功能介绍如下: 1. 自然语言处理 (NLP):能够理解生成人类语言,执行文本分类、机器翻译、问答系统等工作。 2. 图像理解:例如视觉问答模型,能识别图像内容并根据上下文提供解释或答案。 3. 代码生成:帮助编写代码片段,支持开发者快速原型设计自动化任务。 4. 决策支持:模拟人类决策过程,为用户提供策略建议。 5. 创造性任务:撰写文章、故事创作甚至音乐作曲等创新领域。 大模型的适用情况广泛,主要用于: 1. 垂直行业应用:金融风控、医疗健康、法律咨询等领域中的文档理解信息提取。 2. 人工智能助手:智能客服、个性化推荐系统等。 3. 教育工具:在线答疑、知识图谱构建等。 4. 内容生成:新闻摘要、广告创意等场景。 记录分析方面,由于大模型的强大计算能力数据驱动的学习能力,它们在训练过程中会产生大量的参数更新学习数据。对这些数据的记录分析有助于了解模型的性能提升趋势、潜在的知识迁移模型偏差。研究人员会关注以下几个关键指标: 1. 训练时间资源消耗:评估模型的效率。 2. 性能比较:不同模型在特定任务上的准确性泛化能力。 3. 过拟合正则化效果:检查模型是否能有效地避免过拟合。 4. 对抗攻击安全性:研究模型对抗恶意输入的鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值