内网穿透的应用-OpenHands开发者代理平台本地化部署打造高效AI开发助手

前言

各位技术大咖、编程狂热者们,今天我要给大家揭秘一款绝对能让你秒变码界英雄的神器——OpenHands。这不仅仅是一个基于人工智能的软件开发代理平台,它简直就是你的私人智能小助手,帮你搞定从代码编写到命令行操作再到网页浏览的一切繁琐任务,效率翻倍不是梦!如果你也想解锁在Linux系统中安装并利用cporal内网穿透技术实现远程访问的新技能,那就跟着我一起探索这个神奇的‘魔法’吧!

openHands.png

1. Linux部署OpenHands

本篇文章演示环境:Ubuntu22.04

运行 OpenHands 最简单的方法是使用Docker进行部署,如果没有安装Docker,可以查看这篇教程进行安装:Docker安装——Linux、Windows、MacOS - cpolar 极点云官网

输入以下命令来运行以下命令拉取OpenHands镜像:

sudo docker pull docker.all-hands.dev/all-hands-ai/runtime:0.14-nikolaik

image.png

使用以下命令启动OpenHands容器:

sudo docker run -it --pull=always \
    -e SANDBOX_RUNTIME_CONTAINER_IMAGE=docker.all-hands.dev/all-hands-ai/runtime:0.14-nikolaik \
    -e LOG_ALL_EVENTS=true \
    -v /var/run/docker.sock:/var/run/docker.sock \
    -p 3000:3000 \
    --add-host host.docker.internal:host-gateway \
    --name openhands-app \
    docker.all-hands.dev/all-hands-ai/openhands:0.14

image.png

打开浏览器输入 localhost:3000 启动并可以访问。

2. OpenHands功能介绍

首次运行时,会弹出设置窗口。

image.png

用户需要选择LLM提供商、LLM模型并输入API密钥。
可通过点击UI中的齿轮图标随时调整设置。如需使用自定义模型,可在高级选项中手动输入模型名称和Base URL。

设置好后,点击Save保存

image.png

接下来验证下OpenHands,输入下提示词请求,例如:请编写一个 bash 脚本 hello.sh,打印 “hello world!”

image.png

回到OpenHands,可以看到左侧显示提示词,右侧给出了对应回答

fba8e26ccd1ba7927d88df52e9b6ef8.png

接下来我想让他使用HTML创建一个简单的计算器,点击生成,可以看到右侧出现了相应文件的代码

image.png

在输入框中让它运行这个项目,可以看到在对话框中输出了链接

image.png

验证一下这个简单的计算器生成是否正确,这里我使用VsCode打开并运行代码。

image.png

一个简易的计算器就生成好了,如果不满意就可以回到OpenHands,继续输入要求生成新的代码。

image.png

虽然在本地环境中部署OpenHands已经能够显著提升你的开发效率,但如果你希望从任何地方都能随时随地访问这个强大的工具,就需要解决内网穿透的问题。这时,Cpolar就成为了你的得力助手。

Cpolar是一款功能强大且易于使用的内网穿透工具,它能够在几秒钟内将你的本地服务暴露到公网上。无论你是在办公室、家里还是在旅途中,Cpolar都能确保你能够轻松访问OpenHands,而无需复杂的网络配置或昂贵的服务器托管费用。

接下来教大家如何安装Cpolar并且将 OpenHands 实现公网使用。

3. 公网使用OpenHands

3.1 内网穿透工具安装

下面是安装cpolar步骤:

Cpolar官网地址: https://www.cpolar.com

使用一键脚本安装命令

sudo curl https://get.cpolar.sh | sh

在这里插入图片描述

安装完成后,执行下方命令查看cpolar服务状态:(如图所示即为正常启动)

sudo systemctl status cpolar

Cpolar安装和成功启动服务后,在浏览器上输入ubuntu主机IP加9200端口即:【http://localhost:9200】访问Cpolar管理界面,使用Cpolar官网注册的账号登录,登录后即可看到cpolar web 配置界面,接下来在web 界面配置即可:

在这里插入图片描述

3.2 创建远程连接公网地址

登录cpolar web UI管理界面后,点击左侧仪表盘的隧道管理——创建隧道:

  • 隧道名称:可自定义,本例使用了: openhands 注意不要与已有的隧道名称重复

  • 协议:http

  • 本地地址:3000

  • 域名类型:随机域名

  • 地区:选择China Top

image.png

创建成功后,打开左侧在线隧道列表,可以看到刚刚通过创建隧道生成了两个公网地址,接下来就可以在其他电脑(异地)上,使用任意一个地址在浏览器中访问即可。

image.png

如下图所示,成功实现使用公网地址异地远程访问本地部署的OpenHands,跟上面一样,配置好模型即可使用。

image.png

使用上面的cpolar https公网地址,在任意设备的浏览器进行访问,即可成功看到OpenHands界面,这样一个利用公网地址可以进行远程访问的隧道就创建好了,隧道使用了cpolar的公网域名,无需自己购买云服务器,可节省大量资金。使用cpolar创建隧道即可发布到公网进行远程访问,新域名登录,可能需要重新登陆!

4. 固定OpenHands公网地址

由于以上使用cpolar所创建的隧道使用的是随机公网地址,24小时内会随机变化,不利于长期远程访问。因此我们可以为其配置二级子域名,该地址为固定地址,不会随机变化。

登录cpolar官网,点击左侧的预留,选择保留二级子域名,地区选择china vip,然后设置一个二级子域名名称,填写备注信息,点击保留。

image.png

保留成功后复制保留的二级子域名地址:

image.png

登录cpolar web UI管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道,点击右侧的编辑

image.png

修改隧道信息,将保留成功的二级子域名配置到隧道中

  • 域名类型:选择二级子域名

  • Sub Domain:填写保留成功的二级子域名

  • 地区: China VIP

点击更新

在这里插入图片描述

更新完成后,打开在线隧道列表,此时可以看到随机的公网地址已经发生变化,地址名称也变成了保留和固定的二级子域名名称。

image.png

最后,我们使用固定的公网地址访问 OpenHands 界面可以看到访问成功,一个永久不会变化的远程访问方式即设置好了。

image.png

通过将OpenHands部署到Linux本地环境,并巧妙结合cporal实现公网访问,你现在已经获得了随时随地处理复杂开发任务的能力,简直就像拥有了超能力一样!这篇文章不仅希望能为你带来满满的技术干货,更希望能在你的编程之旅中添上一抹亮色。如果觉得有用的话,别忘了给这篇教程点个赞,让我们一起让更多小伙伴加入这场技术盛宴吧!

<think>好的,我现在需要帮用户解决如何在不安装Python的情况下搭建本地的DeepSeek Web UI。首先,我需要明确用户的需求。用户可能希望有一个可以在本地运行的Web界面,用于与DeepSeek模型交互,但不想安装Python环境。这可能是因为用户对Python不熟悉,或者想避免环境配置的麻烦。 接下来,我需要考虑可能的解决方案。通常,Python应用需要Python环境,但用户不想安装,所以可能需要其他方式。首先想到的是使用可执行文件打包工具,比如PyInstaller,将Python应用打包成独立的exe文件。这样用户可以直接运行,无需安装Python。但需要确认DeepSeek Web UI是否依赖特定库或环境,是否兼容打包。 另外,Docker也是一个选项。用户可以在Docker容器中运行应用,这样本地不需要安装Python,只需安装Docker即可。但用户可能需要先安装Docker,对于不熟悉技术的用户来说,可能有一定门槛。 还有,是否有现成的桌面应用版本?比如某些项目可能提供了预编译的二进制文件。需要检查DeepSeek的官方文档或社区是否有相关资源。 如果用户的技术水平较高,可能还可以考虑使用其他语言重写前端,比如JavaScript,但这对用户来说可能不现实。 接下来,我需要验证这些方案的可行性。假设用户使用的是Windows系统,PyInstaller打包可能适用。但需要注意,打包后的文件可能较大,且可能遇到依赖问题,特别是深度学习相关的库如TensorFlow或PyTorch,这些库可能增加打包的复杂性。 另外,检查DeepSeek Web UI的具体依赖。如果它基于Flask或Django这样的Web框架,PyInstaller打包是可行的,但需要处理静态文件和模板的路径问题。可能需要调整代码以确保资源正确加载。 对于Docker方案,需要编写Dockerfile,安装所有依赖项,并暴露端口。用户只需运行docker命令即可启动容器,访问本地端口。这相对干净,但需要用户安装Docker,这可能是一个额外的步骤。 另外,是否有其他替代方案,比如使用JavaScript框架构建前端,通过API调用本地或远程的模型服务?但用户强调本地运行,所以可能需要模型也在本地运行,这可能又涉及到Python环境的问题。 综合考虑,最可行的方案可能是使用PyInstaller打包,或者Docker容器。但用户希望不安装Python,所以Docker可能更合适,尽管需要安装Docker本身。或者,用户是否愿意使用便携式Python环境,比如嵌入Python解释器到应用中?这可能需要更多的配置。 此外,用户可能对安全性和隐私有要求,本地运行可以保证数据不外泄,所以确保解决方案完全离线运行,不需要外部依赖。 最后,需要给出步骤说明,可能包括下载打包好的可执行文件,或者指导如何用Docker运行,以及注意事项,比如模型文件的位置,端口配置等。还要提醒用户可能的性能问题,特别是在没有GPU支持的情况下运行深度学习模型。 总结,可能的回答结构是:先介绍Docker方案,再介绍打包成exe的方法,最后提及其他可能性或注意事项,帮助用户根据自身情况选择。</think>以下是无需安装Python环境即可在本地运行DeepSeek Web UI的解决方案,具体分为两种实现路径: --- ### **方案一:使用预编译可执行文件(推荐)** #### 实现原理 通过将Python项目打包为独立可执行文件(.exe/.app),自动嵌入Python解释器和依赖库。 #### 操作步骤 1. **获取预编译包** 访问DeepSeek官方/社区发布的[Release页面](https://github.com/deepseek-ai/DeepSeek-Web-UI/releases),下载对应系统的`deepseek_web_ui.zip`文件(示例名称)。 2. **解压运行** ```bash unzip deepseek_web_ui.zip cd deepseek_web_ui ./deepseek-ui # Windows双击.exe,macOS需赋予执行权限 ``` 3. **访问界面** 浏览器打开 `http://localhost:7860`(默认端口) --- ### **方案二:通过Docker容器化部署** #### 前置条件 - 已安装[Docker Desktop](https://www.docker.com/products/docker-desktop) #### 部署流程 1. **拉取预构建镜像** ```bash docker pull deepseekai/web-ui:latest ``` 2. **启动容器** ```bash docker run -d -p 7860:7860 --name deepseek_ui deepseekai/web-ui ``` 3. **访问服务** 浏览器访问 `http://localhost:7860` --- ### **方案三:自主打包Python项目(开发者适用)** 若官方未提供预编译包,可手动打包: 1. **获取源码** ```bash git clone https://github.com/deepseek-ai/DeepSeek-Web-UI.git ``` 2. **安装PyInstaller** ```bash curl -L https://github.com/pyinstaller/pyinstaller/archive/refs/tags/v5.13.0.tar.gz | tar xz cd pyinstaller-5.13.0 python setup.py install ``` 3. **生成可执行文件** ```bash pyinstaller --onefile --add-data "templates:templates" --add-data "static:static" app.py ``` --- ### **技术对比** | 方案 | 优势 | 局限性 | |-----------|-----------------------------|--------------------------| | 预编译可执行文件 | 开箱即用,无需技术背景 | 依赖官方提供预编译包 | | Docker | 环境隔离,兼容性好 | 需安装Docker(约1GB磁盘空间) | | 自主打包 | 完全控制版本和配置 | 需Python环境(仅打包时) | --- ### **注意事项** 1. **模型文件加载** 需将`.bin`或`.safetensors`模型文件放置在`models/`目录下(预编译包通常已包含标准模型) 2. **硬件加速支持** - 若需GPU加速,Docker方案需添加`--gpus all`参数 - 预编译包需确认是否包含CUDA运行时 3. **配置文件修改** 通过编辑`config.yaml`可调整: ```yaml server: port: 7860 # 修改端口号 model: device: cpu # 强制使用CPU模式 ``` --- ### **扩展建议** - **移动端适配** 通过内网穿透工具(如`ngrok`)暴露服务: ```bash ngrok http 7860 ``` - **本地知识库集成** 在项目目录下创建`knowledge_base/`文件夹,支持自动加载`.pdf/.txt`文档 --- 以上方案均无需本地Python环境即可实现DeepSeek Web UI的部署。建议优先选择预编译可执行文件方案,若需定制化部署再考虑Docker方式。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值