MATLAB Simulink +STM32硬件在环 (HIL)实现例程测试

MATLAB Simulink +STM32硬件在环 (HIL)实现例程测试


🔖STM32xxxbased类型仅针对STM32CubeMX创建的工程。

  • 🌿测试对象:STM32F103
  • 🔨测试所需条件:STLINKV2、V2-1,或USB转串口工具。
  • 👉🏻硬件在环 (HIL)官方介绍说明:https://ww2.mathworks.cn/discovery/hardware-in-the-loop-hil.html
  • 🔰如果还想使用STM32-MAT(以停产,官方不通过资源包)搭建实现硬件在环测试,✨可以参考《(补充版)STM32-MAT包在Matlab2021b上搭建硬件在环使用环境》(内附STM32-MAT资源包)

🛠MATLAB Simulink硬件参数配置

  • 🌿选择STM32F103硬件串口2作为在环(HIL)调试对象。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 🌿电脑端需要连接的目标串口端口号。所使用的是CH340,USB转串口工具连接目标PA2、PA3引脚。(这里没有使用到ST-LINKV2-1自带的虚拟串口作为连接对象)。
    在这里插入图片描述
    在这里插入图片描述

🌼MATLAB Simulink搭建

  • 🌿添加constant模块和Digital Write模块到工作区并连接起来。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 🔖数字引脚配置可以根据个人使用情况进行指定:
    在这里插入图片描述

-✨配置好以上内容后,即可进行在环测试了。
在这里插入图片描述- 🌿如果连接成功,则会提示下面的相关信息:
在这里插入图片描述
-🌿进入调试阶段后,可以改变constant对象参数值,从而改变所控制的引脚高低电平状态。

在这里插入图片描述

📚测试工程

  • 🔖基于MATLAB R2022a Simulink 版本创建。
链接:https://pan.baidu.com/s/1lc-Faz3fZQwT2RK1qkOB_g 
提取码:2fj0
<think>好的,用户想了解液压动力舵机系统的控制代码和实现方案。首先,我需要回顾一下液压动力舵机系统的基本原理。这类系统通常由液压泵、控制阀、执行机构(如液压缸或马达)和传感器组成。控制代码需要处理输入信号,调整控制阀的开度,从而调节液压流量和压力,驱动执行机构达到目标位置或力。 接下来,我得考虑用户可能的背景。他们可能是机器人或自动化领域的开发者,可能正在参与类似Robocon或RoboMasters的项目,需要控制机械臂、云台或其他需要高扭矩的执行机构。根据引用[1]提到的内容,这类项目涉及传感器读取、运动学计算、PID调试等,所以控制算法可能会用到PID或更高级的控制方法。 用户需要具体的代码示例,但液压系统通常涉及硬件接口,代码可能依赖于特定的控制器和传感器。因此,我需要提供一个通用的框架,可能用Python或C++伪代码,并说明关键部分。同时,需要提到仿真测试,比如引用[3]中的Simulation类,用HIL测试来验证代码。 另外,安全性很重要,引用[2]中波音787的冗余设计和故障检测机制可以借鉴,比如在代码中加入超压保护和故障处理。还要考虑实时性,可能需要实时操作系统或中断处理。 然后,分步骤思考实现方案:系统组成、控制算法、代码结构、安全机制、仿真测试。每个部分需要简要解释,并给出代码示例。例如,PID控制器的实现,传感器数据读取,PWM生成等。 可能的相关问题包括液压系统的建模、PID参数整定方法、硬件选型建议等,这些可以作为相关问题列出,帮助用户进一步探索。 最后,确保回答符合用户要求:结构清晰、可靠,引用相关参考资料,但不需要直接引用,而是融入建议中。例如,引用[1]的PID调试和传感器,引用[2]的冗余设计,引用[3]的仿真测试。</think>### 液压动力舵机系统控制实现方案 液压动力舵机系统是机器人、航空航天和工业自动化中的关键执行机构,其控制代码需要集成传感器反馈、控制算法和液压执行器驱动。以下是分步实现方案: --- #### 一、系统组成与控制框架 1. **硬件层** - 液压执行器(液压缸/液压马达) - 比例阀或伺服阀(控制流量/压力) - 位置/压力传感器(编码器、压力变送器) - 控制器(如STM32、NI CompactRIO) 2. **软件架构** ```python class HydraulicServoController: def __init__(self, sensor, valve, pid_params): self.sensor = sensor # 传感器接口 self.valve = valve # 阀门驱动接口 self.pid = PIDController(pid_params) # PID控制器 def update(self, target_position): current_pos = self.sensor.read_position() control_signal = self.pid.calculate(target_position, current_pos) self.valve.set_opening(control_signal) # 输出阀门开度 ``` --- #### 二、核心控制算法 1. **PID控制**(基础方案) $$u(t) = K_p e(t) + K_i \int_0^t e(\tau)d\tau + K_d \frac{de(t)}{dt}$$ - Python实现示例: ```python class PIDController: def __init__(self, Kp, Ki, Kd): self.Kp, self.Ki, self.Kd = Kp, Ki, Kd self.integral = 0 self.prev_error = 0 def calculate(self, target, current): error = target - current self.integral += error * dt # dt为时间步长 derivative = (error - self.prev_error) / dt output = self.Kp * error + self.Ki * self.integral + self.Kd * derivative self.prev_error = error return output ``` 2. **前馈补偿**(提升动态响应) $$u_{ff} = F_{friction} + m \ddot{x}_{desired}$$ 用于补偿系统惯性和摩擦[^1]。 --- #### 三、安全与冗余设计 1. **故障检测机制** ```python def safety_check(self): if self.sensor.get_pressure() > MAX_SAFE_PRESSURE: self.valve.emergency_shutdown() # 超压保护 if abs(self.current_pos - self.target_pos) > POSITION_TOLERANCE: self.trigger_alarm() # 位置偏差过大报警 ``` 2. **硬件冗余** 采用双传感器校验(如主编码器+备用电位计)和三余度控制计算机[^2]。 --- #### 四、仿真与调试(引用[3]) 1. **基于Simulink的模型验证** ```matlab % 液压系统传递函数建模 G = tf([1],[J*M B K]); % J-惯性矩, B-阻尼系数, K-刚度 sisotool(G) % PID参数整定 ``` 2. **硬件测试HIL)** 使用NI VeriStand或dSPACE实时平台验证控制代码与物理阀门的交互。 --- #### 五、实际部署注意事项 1. **实时性要求** - 控制周期需≤1ms(使用RTOS或Xenomai实时Linux) - 中断服务例程处理传感器数据采集 2. **非线性补偿** - 阀门死区补偿 - 液压油温黏度变化自适应 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值