群&有限群

群&有限群

什么是群?

  • 群就是一类具有共同性质的运算的集合,是将不同运算的共性提取出来得到的概括性的概念。

  • 也就是说,在群中,具体的运算如何并不重要,重要的是研究在既有共性上能够推出什么性质

群的定义

  • 我们在群中主要是研究二元运算,所以先来看看二元运算的定义

  • 二元运算

    • 二元运算的定义:

      S S S非空集合,则 S × S → S S\times S\rightarrow S S×SS称为 S S S上的一个二元运算。

      可以用 + + + ⋅ \cdot 表示(这里只是运算的代表符号,并不一定是真正的加法或乘法

    • 二元运算性质:

      二元运算有封闭性

      二元运算有顺序性,即不一定满足交换律

    • 一般定义

      群的运算满足以下性质

      1. 封闭性 2. 结合律 3. 存在单位元 4. 每个元素都存在逆元 1. 封闭性\\ 2. 结合律\\ 3. 存在单位元\\ 4. 每个元素都存在逆元\\ 1.封闭性2.结合律3.存在单位元4.每个元素都存在逆元

    • 二元运算下的定义

      G非空集合,G有一个二元运算「 ⋅ \cdot 」,该运算满足:

      1. 结合律 2. 存在单位元 3. 每个元素都有逆元 1. 结合律\\ 2. 存在单位元\\ 3. 每个元素都有逆元\\ 1.结合律2.存在单位元3.每个元素都有逆元

      则称G在「 ⋅ \cdot 」下构成群(二元运算定义本身就满足封闭性

群的特征

  • 群阶:群G中的元素个数

群的性质

    1. 群的单位元唯一
    1. 群中元素的逆元唯一
    1. 满足左消去律和右消去律
    1. 重要性质

      若非空集合 G G G中有运算
      1. 封闭性 2. 结合律 3. 对任意 a , b ∈ G ,方程 a x = b , y a = b 有解 1.封闭性\\2.结合律\\3.对任意a,b\in G,方程ax=b,ya=b有解 1.封闭性2.结合律3.对任意a,bG,方程ax=b,ya=b有解
      ⇔ \Leftrightarrow G是群

      (也就是说上述方程在 G G G中有解可以导出存在单位元对每个元素都有逆元

      • 证明

        • 1.证明群 ⇒ \Rightarrow 有解

          很显然 x = a − 1 b , y = b a − 1 x=a^{-1}b,y=ba^{-1} x=a1b,y=ba1为方程的解

        • 2.证明有解 ⇒ \Rightarrow

          • (1)单位元存在

            对任意 a , b ∈ G a,b\in G a,bG,方程 a x = b , y a = b ax=b,ya=b ax=b,ya=b有解,则当 a a a c c c b b b c c c时,有

            c x = c , y c = c cx=c,yc=c cx=c,yc=c

            x x x的解记为 e r i g h t e_{right} eright,将 y y y的解记为 e l e f t e_{left} eleft

            下面证明这两个解分别为左右单位元

            对于任意元素 a a a,有 c x = a , y c = a cx=a,yc=a cx=ayc=a有解

            e l e f t a = ( e l e f t c ) x = c x = a a e r i g h t = y ( c e r i g h t ) = y c = a e_{left}a=(e_{left}c)x=cx=a\\ ae_{right}=y(ce_{right})=yc=a elefta=(eleftc)x=cx=aaeright=y(ceright)=yc=a

            下面证明左右单位元相等

            e l e f t = e l e f t e r i g h t = e r i g h t e_{left}=e_{left}e_{right}=e_{right} eleft=elefteright=eright

            综上可得该群的单位元存在

        • (2)每个元素的逆元都存在

          对任意 a , b ∈ G a,b\in G a,bG,方程 a x = b , y a = b ax=b,ya=b ax=b,ya=b有解,则当 b b b e e e

          a x = e , y a = e ax=e,ya=e ax=eya=e

          则x的解为右逆元,y的解为左逆元

          下面证明左右逆元相等

          a l e f t − 1 = a l e f t − 1 e = a l e f t − 1 a a r i g h t − 1 = e a r i g h t − 1 = a r i g h t − 1 a^{-1}_{left}=a^{-1}_{left}e=a^{-1}_{left}aa^{-1}_{right}=ea^{-1}_{right}=a^{-1}_{right} aleft1=aleft1e=aleft1aaright1=earight1=aright1

          综上对每个元素的逆元都存在

有限群等价定义

  • 非空有限集合G,运算满足

    1. 封闭性 2. 结合律 3. 消去律 1.封闭性\\ 2.结合律\\ 3.消去律 1.封闭性2.结合律3.消去律

    ⇔ \Leftrightarrow G是一个有限群

    • 证明
      • 1.证明有限群 ⇒ \Rightarrow 消去律

        a x = a x ′ a − 1 a x = a − 1 a x ′ x = x ′ \begin{aligned}ax&=ax^\prime&\\ a^{-1}ax&=a^{-1}ax^\prime\\ x&=x^\prime \end{aligned} axa1axx=ax=a1ax=x

        右消去律同理。

      • 2.证明消去律 ⇒ \Rightarrow 有限群

        用消去律证明重要定理(对任意 a , b ∈ G a,b\in G a,bG,方程 a x = b , y a = b ax=b,ya=b ax=b,ya=b有解)成立即可

        对有限集合 G G G,存在 n n n个不同元素, G = { a 1 , a 2 ⋯ a n } G=\{a_{1},a_{2}\cdots a_{n}\} G={a1,a2an},对 G G G左乘元素 a a a,得到 G ′ = { a a 1 , a a 2 ⋯ a a n } G^\prime=\{aa_{1},aa_{2}\cdots aa_{n}\} G={aa1,aa2aan}

        下面证明 G ′ = G G^\prime=G G=G

        假设 G ′ ≠ G G^{\prime}\ne G G=G,因为 G ′ ⊆ G G^\prime\subseteq G GG,则存在

        a a i = a a j ( i ≠ j ) aa_{i}=aa_{j}(i\ne j) aai=aaj(i=j)

        由消去律得到

        a i = a j ( i ≠ j ) a_{i}=a_{j} (i\ne j) ai=aj(i=j)

        则矛盾,说明 G ′ = G G^\prime=G G=G

        那么对于任意的 b ∈ G b\in G bG,一定有 a a k = b aa_{k}=b aak=b,则找到了 x x x的解

        对于 y y y同理

        则通过消去律证明了重要定理,则可以证明这个集合为群

特殊的群

  • 交换群(Abel群):群的二元运算还满足交换律

  • 有限群:元素数量有限

  • 一般线性群: G L ( n , R ) GL(n,\mathcal{R}) GL(n,R)为实数域 R \mathcal{R} R上的n阶可逆方阵构成的集合

  • 特殊线性群: S L ( n , R ) SL(n,\mathcal{R}) SL(n,R)为实数域 R \mathcal{R} R上的行列式值为1的n阶方针构成的集合

乘法表(群表)

  • 乘法表是将集合中二元运算的结果全部列出来得到的表
    • 如下
      ⋅ \cdot a 1 a_{1} a1 a 2 a_{2} a2 a 3 a_{3} a3 a 4 a_{4} a4 a 5 a_{5} a5
      a 1 a_{1} a1 a 1 2 a_{1}^2 a12 a 1 a 2 a_{1}a_{2} a1a2 a 1 a 3 a_{1}a_{3} a1a3 a 1 a 4 a_{1}a_{4} a1a4 a 1 a 5 a_{1}a_{5} a1a5
      a 2 a_{2} a2 a 2 a 1 a_{2}a_{1} a2a1 a 2 2 a_{2}^2 a22 a 2 a 3 a_{2}a_{3} a2a3 a 2 a 4 a_{2}a_{4} a2a4 a 2 a 5 a_{2}a_{5} a2a5
      a 3 a_{3} a3 a 3 a 1 a_{3}a_{1} a3a1 a 3 a 2 a_{3}a_{2} a3a2 a 3 2 a_{3}^2 a32 a 3 a 4 a_{3}a_{4} a3a4 a 3 a 5 a_{3}a_{5} a3a5
      a 4 a_{4} a4 a 4 a 1 a_{4}a_{1} a4a1 a 4 a 2 a_{4}a_{2} a4a2 a 4 a 3 a_{4}a_{3} a4a3 a 4 2 a_{4}^2 a42 a 4 a 5 a_{4}a_{5} a4a5
      a 5 a_{5} a5 a 5 a 1 a_{5}a_{1} a5a1 a 5 a 2 a_{5}a_{2} a5a2 a 5 a 3 a_{5}a_{3} a5a3 a 5 a 4 a_{5}a_{4} a5a4 a 5 2 a_{5}^2 a52

表的性质

    1. 每行每列每个元素都出现且仅只出现一次
    1. 封闭性:元素都在集合内
  • 例子:Hamilton群 设复数域上4个二阶矩阵 I , A = ( i 0 0 − i ) , B = ( 0 1 − 1 0 ) , C = ( 0 i i 0 ) I,A= \left(\begin{array}{l}i&0\\0&-i \end{array}\right),B=\left(\begin{array}{l}0&1\\-1&0 \end{array}\right),C=\left(\begin{array}{l}0&i\\i&0 \end{array}\right) I,A=(i00i),B=(0110),C=(0ii0) H = { ± I , ± A , ± B ± C } H=\{\pm I,\pm A,\pm B \pm C\} H={±I,±A,±B±C} H H H对矩阵乘法构成群吗?
  • A 2 = B 2 = C 2 = − I A^2=B^2=C^2=-I A2=B2=C2=I
  • 四元数群,又称 「Hamilton群」
  • 非交换群的又一个实例

交换群的群表

  • 交换群 ⇔ \Leftrightarrow 群表是关于主对角线对称
    • 例子:Klein四元群
      ∗ * e e e a a a b b b c c c
      e e e e e e a a a b b b c c c
      a a a a a a e e e c c c b b b
      b b b b b b c c c e e e a a a
      c c c c c c b b b a a a e e e
      • 封闭性
      • 每行每列每个元素仅出现一次
      • 表格对称 ⇒ \Rightarrow 群对称
      • a 2 = b 2 = c 2 = e a^2=b^2=c^2=e a2=b2=c2=e
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值