NLP-C2-W3-N-gram和自动补全

自动补全系统的一个关键组成部分是语言模型。给语言序列分配概率,更容易出现的序列得分越高。例如,“我有一支笔”比“我是一支笔”的概率更高,因为第一个句子在现实世界中更容易出现。

步骤

  1. 加载和预处理数据
    • 加载和tokenize数据
    • 把句子分成训练集和测试集。
    • 用一个<unk>标记替换低频单词。
  2. 开发基于N-gram的语言模型
    • 从给定的数据集计算n_gram的计数。
    • 用k-smoothing估计下一个词的条件概率。
  3. 通过计算困惑度来评价N-gram模型。
  4. 根据你的句子,给出接下来的单词的建议。

开发n-gram模型

假设下一个单词的概率只取决于前一个n-gram。

计算条件概率

给定前面n个单词 w t − 1 , w t − 2 ⋯ w t − n w_{t-1}, w_{t-2} \cdots w_{t-n} wt1,wt2wtn,则句中“t”位置的单词的条件概率是:

P ( w t ∣ w t − 1 … w t − n ) (1) P(w_t | w_{t-1}\dots w_{t-n}) \tag{1} P(wtwt1wtn)(1)
可以通过计算训练数据中这些单词序列的出现次数来估计这种概率。
概率可以用比率来估计,其中:
分子是训练数据中单词t-1到t-n之后“t”位置出现该单词的次数。
分母是单词t-1到t-n在训练数据中出现的次数。
P ^ ( w t ∣ w t − 1 … w t − n ) = C ( w t − 1 … w t − n , w n ) C ( w t − 1 … w t − n ) (2) \hat{P}(w_t | w_{t-1}\dots w_{t-n}) = \frac{C(w_{t-1}\dots w_{t-n}, w_n)}{C(w_{t-1}\dots w_{t-n})} \tag{2}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值