前面详细分析了OMP重构算法原理以及实现,本篇主要分析采样率对OMP算法的影响。
OMP重构算法的流程为
以下分析采样率对OMP算法的影响。
先对一维信号重构进行分析,表1是OMP算法中采样率对重构的MSE和时间的对应表格:
表1:MP算法采样率对重构时间和误差的影响
表1中测量了不同采样率对应的OMP算法中重构的MSE和时间的值,从表格中可知,OMP算法和MP算法一样,也是采样率越大,重构产生的MSE越小,重构的图形越接近原始图形,但是时间也会增大,同样增加了计算的复杂度。
下面我们再看一下采样率的不同对lena信号的影响,同MP 算法一样,采用采样率为0.3 0.5 0.8 这三个采样率,对比一下采样率的不同重构出来的图片的清晰度。图1的(a)图是原始图片,(b)为采样率为0.3时的重构图,(c)图是采样率为0.5时的重构图,(d)图是采样率为0.8时的重构图。
(a)原始图片 (b)OMP重构图片(M/N=0.3)
(c)OMP重构图片(M/N=0.5) (d)OMP重构图片(M/N=0.8)
图1:OMP重构的不同采样率的lena重构图形
由图1中的四个图片可知,OMP算法和MP算法一样,采样率越大,重构的图形效果越好,在应用的时候要想获得很好的重构图片就需要较高的采样率,但是所需要的时间也会越大。