本轮均轮背后的傅里叶分解原理(matlab演示)
本轮均轮背后的傅里叶分解原理(matlab演示)
1.简介
均轮、本轮是希腊天文学家希帕克斯提出的以地球为中心的学说,认为天体沿着本轮做匀速圆周运动,这些本轮的中心又沿着各自的更大的均轮做以地球为中心的匀速圆周运动。
在长达十四个世纪的古代时期,占据主导地位的天文学理论,是托勒密的地心说。由于地心说中并不是所有天体都按照围绕地球,做圆形选转的运动方式来运动,所以作为修正,提出来本轮和均轮的概念。
比如上图中的行星视运动中“顺-留-逆-留-顺”运行轨迹,是本轮运动和均轮运动两者综合的结果。
这个方法可以十分精准的预测行星的位置,但是代价便是越来越多的新的本轮均轮被加原来均轮上,形成大圆套小圆的结构。甚至有的天体用到了12个圆来进行模拟。
在当然根据现代的观测结果,人们发现将坐标系放在太阳上可以有效的简化太阳系内行星的运动轨迹,或者说把所有因太阳的引力而绕太阳为焦点的所有行星称为太阳系的行星。此外根据坐标变换原则,人们还可以构建各种奇葩新颖的坐标系,但这不是本文的讨论重点。
本文利用傅里叶分解的原理,证明所有的平面运动都可以用本轮-均轮系统表示,而且圆越多精度越高。而且也存在有限个圆就能完全拟合的曲线。
2.用到的数学工具(傅里叶分解)
这里用到了傅里叶分解,由于研究的是二维曲线,所以需要进行x和y的两次分解。然而这里我直接用复数形式表示,这样求解一次就可以直接出现xy的方程。而且附带的好处是一次傅里叶分解如果出现角速度大小相等方向相反的时候,会自动合并,而复数域分解就会自动分成正负两项,提供了后续绘图的便利。
复数域的傅里叶分解公式:
f ( x ) = ∑ n = − ∞ ∞ c n ⋅ e x p i n π x l f(x) = \sum_{n=-\infty }^{\infty }c_{n}\cdot exp\frac{in\pi x}{l} f(x)=n=−∞∑∞cn⋅explinπx
c n = 1 2 l ∫ l − l f ( t ) ⋅ e x p − i n π t l d t c_{n} =\frac{1}{2l}\int_{l}^{-l}f(t)\cdot exp\frac{-in\pi t}{l}dt cn=2l1∫l−lf(t)