张量与散度

张量的几个物理场景

应力状态

材料内部受力状况就是应力状态,应力在不同方向的大小不同,并且与感应面有关。在这里插入图片描述如图所示材料某点的应力状态,可用矩阵表示
σ = ( σ x τ x y τ x z τ y x σ y τ y z τ z x τ z y σ z ) \sigma=\begin{pmatrix} \sigma_x&\tau_{xy}&\tau_{xz}\\ \tau_{yx}&\sigma_y&\tau_{yz}\\ \tau_{zx}&\tau_{zy}&\sigma_z \end{pmatrix} σ=σxτyxτzxτxyσyτzyτxzτyzσz
这是个对称矩阵,即 τ x y = τ y x , τ x z = τ z x , τ y z = τ z y \tau_{xy}=\tau_{yx},\tau_{xz}=\tau_{zx},\tau_{yz}=\tau_{zy} τxy=τyx,τxz=τzx,τyz=τzy
现在已知某任意平面,那么怎么求该平面上的应力状态呢?如下图所示,以平面示意
在这里插入图片描述红色的箭头是该平面的总的应力,该总应力可以分解成垂直于平面的正应力和平行于平面的切应力。若已知平面的法矢为 n = ( n x , n y , n z ) n=(n_x,n_y,n_z) n=(nx,ny,nz),其总应力计算如下
σ ′ = n ⋅ σ = ( n x , n y , n z ) ( σ x τ x y τ x z τ y x σ y τ y z τ z x τ z y σ z ) \sigma'=n\cdot \sigma=(n_x,n_y,n_z) \begin{pmatrix} \sigma_x&\tau_{xy}&\tau_{xz}\\ \tau_{yx}&\sigma_y&\tau_{yz}\\ \tau_{zx}&\tau_{zy}&\sigma_z \end{pmatrix} σ=nσ=(nx,ny,nz)σxτyxτzxτxyσyτzyτxzτyzσz
那么正应力为
σ n ′ = σ ′ / n ⋅ n = σ ′ ⋅ n ⋅ n = ( n x , n y , n z ) ( σ x τ x y τ x z τ y x σ y τ y z τ z x τ z y σ z ) ( n x n y n z ) ( n x , n y , n z ) \sigma'_n=\sigma'/n\cdot n=\sigma'\cdot n\cdot n\\=(n_x,n_y,n_z) \begin{pmatrix} \sigma_x&\tau_{xy}&\tau_{xz}\\ \tau_{yx}&\sigma_y&\tau_{yz}\\ \tau_{zx}&\tau_{zy}&\sigma_z \end{pmatrix} \begin{pmatrix} n_x\\n_y\\ n_z \end{pmatrix}(n_x,n_y,n_z) σn=σ/nn=σnn=(nx,ny,nz)σxτyxτzxτxyσyτzyτxzτyzσznxnynz(nx,ny,nz)
切应力的为
σ τ ′ = σ ′ ÷ n = σ ′ − σ n ′ \sigma'_\tau=\sigma'\div n=\sigma'-\sigma'_n στ=σ÷n=σσn

转动惯量

一个物体的转动,和平移一样,也存在惯性。转动惯量就是衡量这个惯性的大小。对于规则的物体,其转动比较容易求得,如下图所示
在这里插入图片描述该立方块绕 x x x轴的转动惯量为 J x J_x Jx,绕 y y y轴的转动惯量为 J y J_y Jy,绕 z z z轴的转动惯量为 J z J_z Jz。那么如何求得其绕任意轴 n n n的转动惯量 J ′ J' J,如图红色所示。转动惯量也是一种张量,其数学形式如下
J = ( J x 0 0 0 J y 0 0 0 J z ) J=\begin{pmatrix} J_x&0&0\\0&J_y&0\\ 0& 0&J_z \end{pmatrix} J=Jx000Jy000Jz
那么绕 n n n的总转动惯量计算如下
J ′ = n ⋅ J = ( n x , n y , n z ) ( J x 0 0 0 J y 0 0 0 J z ) J'=n\cdot J=(n_x,n_y,n_z)\begin{pmatrix} J_x&0&0\\0&J_y&0\\ 0& 0&J_z \end{pmatrix} J=nJ=(nx,ny,nz)Jx000Jy000Jz
总的转动惯量到转轴的投影就是绕这个轴的转动惯量
J n ′ = J ′ / n ⋅ n J'_n=J'/n\cdot n Jn=J/nn
总的转动惯量垂直于这个轴的投影为
J τ ′ = J ′ ÷ n J'_\tau=J'\div n Jτ=J÷n
有个疑问,为什么会有这个垂直的转动惯量。这是因为,在物体转动的时候,两端会甩开远离轴,或者聚拢越来越接近轴,而这个转动的转动惯量就是总转动惯量垂直于这个轴的分量。

各向异性的感应电场

我们知道,一个电荷在真空中形成的电场是向各个方向发散,并且每个方向等强度,即等势面是球形。但如果在物质内部呢?这个电荷在物质内部形成的是感应电场(也常称为电位移矢量),并且由于很多物质都是各向异性的,也就是说电荷在不同方向的感应效果不一样,所以等势面试是椭球,如下图所示
在这里插入图片描述
其实所有三维张量都可以用椭球表示,二维张量可以用椭圆表示。
电荷在真空发出的电场为
E = Q 4 π r 2 ( ϵ 0 0 0 ϵ 0 0 0 ϵ ) E=\frac{Q}{4\pi r^2}\begin{pmatrix} \epsilon&0&0\\0&\epsilon&0\\0&0&\epsilon \end{pmatrix} E=4πr2Qϵ000ϵ000ϵ
电荷在各向异性物质内感应的电场为
D = Q 4 π r 2 ( ϵ x x ϵ x y ϵ x z ϵ y x ϵ y y ϵ y z ϵ z x ϵ z y ϵ z z ) D=\frac{Q}{4\pi r^2}\begin{pmatrix} \epsilon_{xx}&\epsilon_{xy}&\epsilon_{xz}\\\epsilon_{yx}&\epsilon_{yy}&\epsilon_{yz}\\\epsilon_{zx}&\epsilon_{zy}&\epsilon_{zz} \end{pmatrix} D=4πr2Qϵxxϵyxϵzxϵxyϵyyϵzyϵxzϵyzϵzz
该式中的矩阵为对称矩阵,即 ϵ x y = ϵ y x , ϵ x z = ϵ z x , ϵ y z = ϵ z y \epsilon_{xy}=\epsilon_{yx},\epsilon_{xz}=\epsilon_{zx},\epsilon_{yz}=\epsilon_{zy} ϵxy=ϵyx,ϵxz=ϵzx,ϵyz=ϵzy。矩阵中 ϵ i j = ϵ i j r ϵ \epsilon_{ij}=\epsilon^r_{ij}\epsilon ϵij=ϵijrϵ,其中 ϵ i j r \epsilon^r_{ij} ϵijr为方向 i j ij ij的相对介电系数,所以任意方向的感应电场强度为
D ′ = n ⋅ D = ( n x , n y , n z ) ( ϵ x x ϵ x y ϵ x z ϵ y x ϵ y y ϵ y z ϵ z x ϵ z y ϵ z z ) D'=n\cdot D=(n_x,n_y,n_z)\begin{pmatrix} \epsilon_{xx}&\epsilon_{xy}&\epsilon_{xz}\\\epsilon_{yx}&\epsilon_{yy}&\epsilon_{yz}\\\epsilon_{zx}&\epsilon_{zy}&\epsilon_{zz} \end{pmatrix} D=nD=(nx,ny,nz)ϵxxϵyxϵzxϵxyϵyyϵzyϵxzϵyzϵzz
其大小为
∣ D ′ ∣ = D ′ / n = D ′ ⋅ n = ( n x , n y , n z ) ( ϵ x x ϵ x y ϵ x z ϵ y x ϵ y y ϵ y z ϵ z x ϵ z y ϵ z z ) ( n x n y n z ) |D'|=D'/n=D'\cdot n=(n_x,n_y,n_z)\begin{pmatrix} \epsilon_{xx}&\epsilon_{xy}&\epsilon_{xz}\\\epsilon_{yx}&\epsilon_{yy}&\epsilon_{yz}\\\epsilon_{zx}&\epsilon_{zy}&\epsilon_{zz} \end{pmatrix} \begin{pmatrix} n_x\\n_y\\n_z \end{pmatrix} D=D/n=Dn=(nx,ny,nz)ϵxxϵyxϵzxϵxyϵyyϵzyϵxzϵyzϵzznxnynz
这就是一个二次型,其图像就是椭球,所以说张量可以用椭球表示。

张量的散度

我们知道张量可以表示感应电场,其实他可以表示任意种不同方向不同大小和方向的场,也就是张量场。既然有场,那就有散度的概念。已知下面的张量
M = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) M=\begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix} M=a11a21a31a12a22a32a13a23a33
那么该场为
f = ( x , y , z ) ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) f=(x,y,z)\begin{pmatrix} a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{pmatrix} f=(x,y,z)a11a21a31a12a22a32a13a23a33
散度有两种计算方式,一种是极限的计算方式
d i v f = lim ⁡ v → 0 ∮ s f d s / v div f=\lim_{v \to 0}\oint_{s}fds/v divf=v0limsfds/v
还有一种方式为 d i v f = ∇ ⋅ f = ∂ f ∂ x + ∂ f ∂ y + ∂ f ∂ z div f=\nabla \cdot f=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z} divf=f=xf+yf+zf
采用第二种比较容易计算,那么张量场的散度为
d i v f = ∇ ⋅ f = a 11 + a 22 + a 33 div f=\nabla \cdot f=a_{11}+a_{22}+a_{33} divf=f=a11+a22+a33
也就是说张量的散度就是张量的迹,可知一个方阵无论经过什么样的相似变换,它的迹不变;也就是说场无论经过什么样的坐标变换,它的散度不变。

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值