三面角
- 正弦定理 sin a sin α = sin b sin β = sin c sin γ \frac{\sin a}{\sin \alpha}=\frac{\sin b}{\sin \beta}=\frac{\sin c}{\sin \gamma} sinαsina=sinβsinb=sinγsinc
- 余弦定理 { cos α = cos β cos γ + sin β sin γ cos a cos a = − cos b cos c + sin b sin c cos α \begin{cases}\cos \alpha = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos a\\ \cos a=-\cos b \cos c+ \sin b \sin c \cos \alpha \end{cases} {cosα=cosβcosγ+sinβsinγcosacosa=−cosbcosc+sinbsinccosα
球面三角
- 正弦定理 sin A sin α = sin B sin β = sin C sin γ \frac{\sin A}{\sin \alpha}=\frac{\sin B}{\sin \beta}=\frac{\sin C}{\sin \gamma} sinαsinA=sinβsinB=sinγsinC
- 余弦定理
{ cos α = cos β cos γ + sin β sin γ cos A cos A = − cos B cos C + sin B sin C cos α \begin{cases}\cos \alpha = \cos \beta \cos \gamma + \sin \beta \sin \gamma \cos A\\ \cos A=-\cos B \cos C+ \sin B \sin C \cos \alpha \end{cases} {cosα=cosβcosγ+sinβsinγcosAcosA=−cosBcosC+sinBsinCcosα
其中 A A A, B B B, C C C分别是球面三角形的球面角, α \alpha α, β \beta β, γ \gamma γ分别是球面三角形的球心顶角;
详见:知乎:球面学基础.