Bioinformatics Data Skills by Oreilly——学习生信的入门好书

翻阅《生信宝典》公众号,偶然看到推荐的两本生信入门好书,分享给大家:

  1. 《Bioinformatics Data Skills - - Reproducible.and.Robust.Research.with.Open.Source.Tools》链接:》链接: 接: https://pan.baidu.com/s/1c2g0MPU 密码: 密码: v2c9
  2. 《Bioinformatics with Python Cookbook》链接: 接: https://pan.baidu.com/s/1dF0H52x 密码: 密码: a7e4

自己看了其中比较初级版本的《Bioinformatics Data Skills》的第一章(简介部分),全书500多页,虽然是全英文,但是通俗易懂,适合对Linux、Python(文本处理语言)等有一些基本了解的新手学习。

若对两者不太了解,本书又推荐了一些有用的书籍,如:
用于Python学习的:Bioinformatics Programming
Using Python by Mitchell L. Model (O’Reilly, 2009), Learning Python, 5th Edition,by Mark Lutz (O’Reilly, 2013), and Python in a Nutshell, 2nd, by Alex Martelli(O’Reilly, 2006)
用于了解Unix命令的: Practical Computing for Biologists
by Steven Haddock and Casey Dunn (Sinauer, 2010) or UNIX and Perl to the Rescue by Keith Bradnam and Ian Korf (Cambridge University Press, 2012).
关于正则表达式的运用:Introducing Regular Expressions by Michael Fitzgerald (O’Reilly) ;http://regex101.com and http://www.debug‐gex.com to write,test and debug regular expressions.

Supplementary Material on GitHub
本书的附加材料在GitHub上可以获得(Chapter 5 中介绍)。

Computing Resources and Setup
若是Mac环境,作者推荐使用Homebrew帮助你进行软件的安装。有条件的最好是在Linux或Unix环境下,进行测试

Organization of This Book
共分为三大部分:
Part I, containing one chapter on ideology;
Part II, which covers the basics of getting started with a bioinformatics project;
Part III, which covers bioinformatics data skills.
Chapter2. trivial topic, organized project, markdown
Chapter3. Unix
Chapter4. increase productivity when working with remote machines.
Chapter5. Git
Chapter6. download data, validate integrity
Part III 第七章之后是实战
Chapter7. Unix data tools, Unix pipelines
Chapter8. R language
Chapter9. genomic data
Chapter10. sequence data FASTA, FASTQ
Chapter11. SAM,BAM,Samtools,variant calling
Chapter12. data-processing scripts and pipelines(Bash scriptin, find and xargs)
Chapter13. Tabix, SQL, GWAS
Chapter14. further develop

We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at http://bit.ly/Bio-DS.

This practical book teaches the skills that scientists need for turning large sequencing datasets into reproducible and robust biological findings. Many biologists begin their bioinformatics training by learning scripting languages like Python and R alongside the Unix command line. But there's a huge gap between knowing a few programming languages and being prepared to analyze large amounts of biological data. Rather than teach bioinformatics as a set of workflows that are likely to change with this rapidly evolving field, this book demsonstrates the practice of bioinformatics through data skills. Rigorous assessment of data quality and of the effectiveness of tools is the foundation of reproducible and robust bioinformatics analysis. Through open source and freely available tools, you'll learn not only how to do bioinformatics, but how to approach problems as a bioinformatician. Go from handling small problems with messy scripts to tackling large problems with clever methods and tools Focus on high-throughput (or "next generation") sequencing data Learn data analysis with modern methods, versus covering older theoretical concepts Understand how to choose and implement the best tool for the job Delve into methods that lead to easier, more reproducible, and robust bioinformatics analysis Table of Contents Part I. Ideology: Data Skills for Robust and Reproducible Bioinformatics Chapter 1. How to Learn Bioinformatics Part II. Prerequisites: Essential Skills for Getting Started with a Bioinformatics Project Chapter 2. Setting Up and Managing a Bioinformatics Project Chapter 3. Remedial Unix Shell Chapter 4. Working with Remote Machines Chapter 5. Git for Scientists Chapter 6. Bioinformatics Data Part III. Practice: Bioinformatics Data Skills Chapter 7. Unix Data Tools Chapter 8. A Rapid Introduction to the R Language Chapter 9. Working with Range Data Chapter 10. Working with Sequence Data Chapter 11. Working with Alignment Data Chapter 12. Bioinformatics Shell Scripting, Writing Pipelines, and Parallelizing Tasks Chapter 13. Out-of-Memory Approaches: Tabix and SQLite Chapter 14. Conclusion
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值