5.1 WiFiNet:基于WiFi的室内定位使用CNN

文章来源:

Hernández N, Parra I, Corrales H, et al. WiFiNet: WiFi-based indoor localisation using CNNs[J]. Expert Systems with Applications, 2021, 177: 114906.

摘要

人们提出了不同的技术来提供室内定位磁场、蓝牙、WiFi等。其中WiFi具有最高的可用性准确率。这一事实允许对几乎任何环境和任何设备进行无处不在的精确定位。然而,基于wifi的定位仍然是一个悬而未决的问题。在本文中,我们提出了一种新的基于wifi的室内定位系统,该系统利用了卷积神经网络在分类问题上的强大能力。为了实现这一目标,使用了三种不同的方法一种名为WiFiNet的定制架构,专门为解决这一问题而设计和训练,另一种是使用迁移学习征提取的最流行的预训练网络。结果表明,在中型环境(30个位置和113个接入点)中,WiFiNet是一种很好的室内定位方法,因为与最先进的WiFi室内定位算法(如SVM)相比,它减少了平均定位误差(33%)和处理时间。

1.前言

近年来,应用程序和连接设备的数量呈指数级增长(图1)。据思科称,这一趋势预计将在未来几年持续,到2022年将达到285亿物联网连接设备(Thomas Barnett, Jain, Andra, & Khurana, 2018)。笔记本电脑、手机和平板电脑是传统上用于连接的设备。然而,近年来,许多其他设备,如智能手表、冰箱、甚至灯泡或牙刷,都加入了设备互联的世界。这一趋势试图通过物联网应用在智能家居(Bergeron, Bouchard, Gaboury, & Giroux, 2018)、城市(Islam, Uddin, Mukherjee, & Nirjon, 2018)或仓库(Rabeah, Aditya, Alawwad, Molisch, & Behairy, 2016)中帮助用户生活的方方面面(Atzori, Iera, & Morabito, 2010)。

随着智能传感器几乎无处不在,物联网应用将需要或受益于某设备的可靠和准确定位。例如,在医院找到医务人员、医疗设备甚至患者将提高医疗服务的质量和速度(McAllister, El-Tawab, & Heydari, 2017)。这种定位必须是实时的,准确的室内和室外(Racko, Machaj和Brida, 2018),并具有低功耗。到目前为止,这种定位通常是通过使用GPS(全球定位系统)提供的,但有一个主要问题由于NLOS(非视距)效应,它不能在室内工作。

因此,人们提出了不同的技术来提供室内定位(Zafari, Gkelias, & Leung, 2019):磁场(Carrera-Villacr´es, Zhao, Braun, Luo, & Zhao, 2018),蓝牙(Ayyalasomayajula, Vasisht, & Bharadia, 2018), Kriz, Maly,和Toma´ˇs Luo等人,2017),UWB (超宽带)(Ridolfi, Van de Velde, Steendam, & de Poorter, 2016), RFID (Calderoni, Ferrara, Franco, & Maio, 2015)或可见光 (Di Lascio, Varshney, Voigt, & Perez-Penichet, 2016;Hu等人,2018)等。

基于无线RSSI的室内定位(基于蓝牙、超宽带或WiFi)由于其高可用性(在物联网设备和环境中)、低功耗和高精度,是最常见的。其中,WiFi是可用性和准确性最高的,但功耗略高(Sadowski & Spachos, 2018)。这一事实使得几乎任何环境和任何设备都可以进行无处不在的精确定位。

然而,基于wifi的定位仍然是一个开放的问题。自从雷达,2000年提出的第一个方法(Bahl & Padmanabhan, 2000),研究界提出了不同的解决方案,以提高定位精度,使用基于最先进算法的方法,如随机森林(Jedari, Wu, Rashidzadeh, & Saif, 2015)或分类器集成(Torres-Sospedra等人,2016Hern´andes, Alonso, & Oca na, 2017)取得了有希望的结果。

但这些基于经典机器学习的定位方法大多存在两个主要问题对大环境的可扩展性较低泛化能力,当现场调查位置的数量不够多时,会增加定位误差。因此,提出了新的方法来解决这些问题,以减少现场调查的工作量(Hern´andes, Oca na, Alonso, & Kim, 2017)或系统的自我维护(Tao & Zhao, 2018)。尽管所有的努力都致力于基于wifi的室内定位研究,但仍有改进的空间。

本文提出一种新的基于wifi的室内定位系统,利用CNN(卷积神经网络)在分类问题中的出色表现,寻找在不忘记其泛化能力和可扩展性的情况下减少定位误差。为了实现这一目标,我们探索了三种不同的方法一种称为WiFiNet的自定义架构,专门设计和训练以解决这个问题,使用八个著名的预训练网络进行迁移学习,最后,从预训练网络中提取特征,与经典分类器一起使用。

由于大多数CNN的设计目的是对图像进行分类,因此在训练网络之前,必须将WiFi样本(来自WiFi ap (Access Points))转换为图像。ap排序形成图像的方式是定位过程的关键,因为CNN将搜索图像的小区域作为一个整体的特征。因此,将根据ap在收集到的数据中出现的顺序来创建图像,以增加其空间关系。一旦创建了图像,它们可以被输入到CNN中进行初始阶段的训练,以及在使用CNN进行设备定位期间进行分类。

设计了三个不同的实验来测试该系统在训练数据集中覆盖的位置进行定位(测试新的定位系统的常用方法),在训练数据集中不存在的位置进行定位(以评估其泛化能力)和在现实条件下的定位(在环境中行走)。测试数据在不同的时间和日期从训练数据中收集,以捕捉WiFi信号随时间的高变异性。此外,还对处理时间进行了分析,以评价系统的可扩展性。

WiFiNet作为室内定位的一种很好的方法出现,因为与最先进的算法相比,它减少了平均定位误差(RMSE为3.3m,而在具有30个位置和113个ap的中型环境中使用SVM为4.4m)。同时,WiFiNet的可扩展性使我们认为它将最先进的算法能够在更大的环境中执行实时定位。

论文的其余部分结构如下第2节分析了WiFi室内定位的最新技术现状,展示了该领域最重要和最新的工作。第3节介绍了这项工作的核心。它描述了使用CNN的不同方法,并描述了我们的自定义架构WiFiNet。第4部分是实验评估、结果分析和讨论。第5部分总结了本文的主要贡献和未来的研究方向。

3.用于WiFi室内定位的CNN

近年来,CNN作为一种特殊的包含卷积层的多层神经网络,已经成为计算机视觉和自然语言处理问题中分类的关键方法。在这一领域,CNN已经击败了传统方法,越来越地用于分类问题。然而,CNN的效果很少在其他领域得到检验。当训练CNN解决新问题时,可以使用四种不同的方法:

(1)设计和训练新的网络架构这种方法需要对 CNN架构设计有深刻的理解,需要有大数据集和强大的硬件来训练新网络。当要解决的问题与现有网络所解决的问题有很大不同,并且可用的训练图像数量足够多时,通常选择这种方法。

(2)使用预训练网络(迁移学习)有广泛的预训练网络,可以用作解决新问题的起点。这些模型中的大多数都是为了提高对ImageNet (ImageNet, 2009)进行分类的性能而设计的,ImageNet是一个大规模数据集(超过100万张图像),在ImageNet大规模视觉识别挑战赛(ILSVRC)中使用了1000个不同的类别(Russakovsky等人,2015)。在这种方法中,在之前的训练中学习到的知识(低级特征提取,如颜色、边缘、形状等)会被保持,并且在新的训练中只会进行微调。通过使用迁移学习,新的训练将更快,新数据集中所需的图像数量比从头开始训练网络要少得多。

(3)从头开始训练现有的网络架构这种方法重用了现有CNN的设计,但权重被重新计算以解决新问题。与第一种方法的区别是不需要设计CNN架构,但仍然需要大量的图像来训练网络。当问题与现有的问题相似,但之前的方法(迁移学习)没有提供预期的结果时,通常使用这种方法。

(4)使用现有的预训练网络来提取特征,然后将它们作为经典分类算法的输入这种方法利用了预训练网络的架构和权重。CNN仅用于提取将被用作其他分类器(如KNN或SVM)输入特征的特征。这种方法多用于在计算能力、时间或样本数量不足的情况下训练网络,同时也能利用CNN提取显著特征的强大能力。

本文提出使用CNN通过环境上的WiFi ap的RSS来估计设备的位置。为此,我们遵循了三种方法设计并从头开始训练一个新的网络架构,使用不同的预训练网络来利用迁移学习,最后,预训练网络也用于提取特征以作为一些经典分类器的输入。

由于所有这些网络都是为了对图像进行分类而设计的,因此第一步将是转换RSS样本。一旦RSS样本被转换为图像,它们就可以用来训练网络(或提取特征)。当然,在定位阶段也需要同样的转换来定位设备。

3.1. 从RSS样本中创建图像

3.2. WiFiNet:一个自定义架构

正如本节开始解释的那样,当要解决的问题与现有网络已经解决的问题有很大不同,并且可用的训练样本数量足够时,可以使用自定义架构。然而,知道有多少样本足以提前训练网络几乎是不可能的,这需要训练和测试网络,以从结果中获得这些知识。因此,在实践中,这种方法被用于解决新问题,就像本文的情况一样现有架构和预训练网络的设计目的是在输入图像中识别真实物体(汽车,动物等),但我们的目标是从RSS测量中获得位置,这些在图像中没有明显意义

本文提出了一种基于ResNet瓶颈单元的自定义网络架构WiFiNet,以利用其效率和准确性。

我们的网络由13个卷积层(Conv)组成,然后是一个归一化(BN)层和每三个Conv + BN层一个ReLU层(整流线性单元)。图4显示了完整的架构。可以看到,初始输入Conv + BN + ReLU块之后是四个Conv + BN + Conv + BN + Conv + BN + ReLU块,其中不同层的输出随着它们在网络中的深度增长。这样做是为了保持图像边缘像素的权重与其他像素相同。实验结果表明,该网络在准确率、平均误差和处理时间方面都取得了最好的结果。网络的最后一层是一个全连接+ Softmax层,它将使用前一层的激活来决定收集RSS样本的最可能位置。由于该网络是专门为解决这种定位问题而设计的,因此无需调整输入图像的大小(如3.1节所述)。

3.3. 基于预训练网络的迁移学习

3.4. 预训练网络特征提取

3.5. 经典分类器:基准

4.结果与讨论

4.2. 训练数据集中现有位置的定位

在本实验中,测试岗位与训练岗位相同。这样,当在已知位置执行定位时,就可以测试不同算法的行为,这是最好的情况。完美的定位算法应该获得0m的均方根误差(RMSE),精度为100%。

图7显示了使用表1中总结的算法的精度(图7a)和RMSE(图7b)。使用四种不同的颜色来帮助区分四种不同的方法(自定义架构,迁移学习,特征提取和经典学习器)。表2显示了使用每种方法的最佳算法的结果摘要。

可以看到,使用ResNet18 (24.6 cm)的迁移学习获得了最高的精度和最低的RMSE,紧随其后的是ResNet101、ResNet50、GoogLeNet和WiFiNet (28 cm)。然而,使用ResNet18 (63.5 cm)进行特征提取似乎不如使用CNN本身。在特征提取算法中,支持向量机加AlexNet FE获得的RMSE最低(34.9 cm),而支持向量机(不加FE)的RMSE几乎翻倍(72.7 cm)。

5.结论

本文提出了一种利用CNN在室内环境中利用WiFi RSS估计设备位置的新方法。评估了三种不同的方法一种名为WiFiNet的新架构,专门用于解决问题,另一种是使用迁移学习和特征提取的最流行的预训练网络。此外,测试了基于wifi的室内定位性能最好的经典算法作为基准。

为了分析不同方法的性能,进行了三种不同条件下的实验使用在训练数据集中相同位置上收集的数据来测试它们的准确性,使用在训练数据集中不存在位置上收集的数据来评估它们的泛化能力,使用四处走动时收集的数据来评估它们在现实条件下的性能。

分析结果后,我们得出以下结论:

WiFiNet和ResNet18 (TL)是学习如何识别静态位置(包括已知和未知)的最佳方法。

ResNet18 (TL)和SVM在定位设备在静态位置时显示出良好的泛化能力。然而,在现实条件下(运动中)定位设备时,它们似乎不那么好。

•WiFiNet是最好的泛化和适应现实条件,使用在环境中行走时收集的测量数据实现了3.3 m的RMSE。

•即使TL(特别是使用ResNet18)在将设备定位于环境的静态位置(已知和未知)时提供了几乎最好的结果,TL似乎不能很好地适应运动条件。

•特征提取似乎不是一个好方法,特别是其低泛化能力。

根据结果,我们可以得出结论,使用WiFiNet进行基于wifi的室内定位是一种很好的方法,与其他最先进的方法相比,减少了RMSE,特别是在现实条件下定位设备时(3.3m WiFiNet vs 4.4m SVM)。此外,WiFiNet是高度可扩展的,这使我们认为它将能够比其他最先进的方法(如SVM)在更大的环境中实现实时定位(0.46ms /样本WiFiNet vs 47.27ms /样本SVM使用50172个ap)。

在未来,我们计划利用WiFiNet的巨大可扩展性,利用在Radiocells.org (Radiocells.org, 2009)等项目中收集的数据来改进在更大的环境中的定位,并获得中间位置的“虚拟”RSS样本。为此,我们将使用Hern´andes等人(2017)提出的CSE算法。这样,WiFiNet定位系统的分辨率将得到提高,而无需在其他位置收集测量数据。通过这种方法,我们希望在不增加处理时间的情况下降低平均定位误差,这是原始CSE算法和其他先进方法的主要问题。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值