dash 初体验(拔草)

本文介绍了Dash,一个基于Flask、Poltly.js和React.js的Python框架,用于快速开发数据可视化web应用。文章详细指导了环境搭建、基本命令和数据分析必备库,同时指出了Dash的缺点,如缺乏实时更新功能和高学习成本,作者倾向于使用Streamlit。
摘要由CSDN通过智能技术生成

Dash简介

Dash 是一个高效简洁的 Python 框架,建立在 FlaskPoltly.js 以及 React.js 的基础上,设计之初是为了帮助前端知识匮乏的数据分析人员,以纯 Python 编程的方式快速开发出交互式的数据可视化 web 应用。

搭建环境

在学习 Dash 的一开始,我们需要对 Dash 的若干基础概念进行了解,首先我们来从头开始搭建 Dash 环境,因为主要是面向数据分析处理人员,所以我推荐使用 conda 进行环境管理,参考下列命令即可完成环境的初始化:

常用基础命令

# 如果pip 注意确保python的版本是3以上
conda create --name dash-env  python=3.9
conda activate dash-env
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple dash -U
# 如果pip 不是内部命令则运行:
conda install pip
# 如果想删除环境则用:(注意需在其他环境下) 
conda remove --name dash-env --all
#查询python版本
python -V

数据分析必装库

准备 requirements_dash. Txt 梳理好要装的库,以后装了库也记得更新同步下,尽量在这个环境(env)中不要装其他用不到的库,避免污染。

matplotlib
numpy
pandas
Pillow
requests
scikit-learn
scipy
Scrapy
statsmodels
xlwt
dash
dash-renderer
dash-html-components
dash-core-components
pymysql
ipykernel
openpyxl
pyecharts
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r C:\requirements_dash.txt

搭建第一个网页

import dash
import dash_html_components as html
app = dash.Dash(__name__)

app.layout = html.H1('hello dash!')

if __name__ == '__main__':
    app.run_server()

image.png

缺点:不能像 streamlit 那样修改代码直接运行,直接劝退,而且设计界面和前端没什么优势,完全没有 streamlit 那样所见即所得的快感,劝退劝退。

学习成本太高,暂时放弃,好好学习 streamlit,用好一个就好了

仅为个人试错记录。说不定又会回来呢。

相关资料

(数据科学学习手札102)Python+Dash快速web应用开发——基础概念篇 - 费弗里 - 博客园 (cnblogs.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

细节处有神明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值