Dash简介
Dash
是一个高效简洁的 Python
框架,建立在 Flask
、Poltly.js
以及 React.js
的基础上,设计之初是为了帮助前端知识匮乏的数据分析人员,以纯 Python
编程的方式快速开发出交互式的数据可视化 web 应用。
搭建环境
在学习 Dash
的一开始,我们需要对 Dash
的若干基础概念进行了解,首先我们来从头开始搭建 Dash
环境,因为主要是面向数据分析处理人员,所以我推荐使用 conda
进行环境管理,参考下列命令即可完成环境的初始化:
常用基础命令
# 如果pip 注意确保python的版本是3以上
conda create --name dash-env python=3.9
conda activate dash-env
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple dash -U
# 如果pip 不是内部命令则运行:
conda install pip
# 如果想删除环境则用:(注意需在其他环境下)
conda remove --name dash-env --all
#查询python版本
python -V
数据分析必装库
准备 requirements_dash. Txt 梳理好要装的库,以后装了库也记得更新同步下,尽量在这个环境(env)中不要装其他用不到的库,避免污染。
matplotlib
numpy
pandas
Pillow
requests
scikit-learn
scipy
Scrapy
statsmodels
xlwt
dash
dash-renderer
dash-html-components
dash-core-components
pymysql
ipykernel
openpyxl
pyecharts
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r C:\requirements_dash.txt
搭建第一个网页
import dash
import dash_html_components as html
app = dash.Dash(__name__)
app.layout = html.H1('hello dash!')
if __name__ == '__main__':
app.run_server()
缺点:不能像 streamlit 那样修改代码直接运行,直接劝退,而且设计界面和前端没什么优势,完全没有 streamlit 那样所见即所得的快感,劝退劝退。
学习成本太高,暂时放弃,好好学习 streamlit,用好一个就好了
仅为个人试错记录。说不定又会回来呢。
相关资料
(数据科学学习手札102)Python+Dash快速web应用开发——基础概念篇 - 费弗里 - 博客园 (cnblogs.com)