以小尺寸加速机器学习模型
去年在Google Next大会上,Google 宣布他们正在围绕其Edge TPU打造两款新硬件产品。它们的目的是允许像Raspberry Pi或其他微控制器这样的边缘设备通过允许它们在自己的硬件上本地运行预先训练的Tensorflow Lite模型的推理,来利用人工智能应用程序的强大功能,例如图像分类和对象检测。这不仅比拥有服务于机器学习请求的云服务器更安全,而且还可以大大减少延迟。
Coral USB加速器
Coral USB 加速器的尺寸为 65x30x8mm,使……
Coral USB Accelerator 售价 60 欧元(之前为 75 欧元),可以通过网站订购
在硬件方面,它包含一个边缘张量处理单元 (TPU),它以相对较低的功耗为深度学习模型提供快速推理。
USB 加速器适用于以下操作系统之一:
- Linux Debian 10 或其衍生版本(例如 Ubuntu 18.04 或 Raspbian)
- macOS,安装了 MacPorts 或 Homebrew
- Windows 10
它在通过 USB 3.0 连接时效果最佳,即使它也可以与 USB 2.0 一起使用,因此也可以与不提供任何 USB 3 端口的 Raspberry Pi 3 等微控制器一起使用。