机器学习
文章平均质量分 70
生活就像一杯茶
生活在南京的程序员,从事Java后端开发工作,在这里记录自己的工作和学习
展开
-
【ML】softmax简单理解。
softmax 简单理解原创 2023-12-07 14:24:03 · 1009 阅读 · 0 评论 -
【ML】欠拟合和过拟合的一些判别和优化方法(吴恩达机器学习笔记)
欠拟合、过拟合的一些判别和优化方法原创 2023-11-14 14:35:32 · 191 阅读 · 0 评论 -
【ML】异常检测、PCA、混淆矩阵、调参综合实践(基于sklearn)
机器学习 异常检测、PCA、混淆矩阵、调参综合实践(基于sklearn)原创 2022-12-26 11:02:48 · 1044 阅读 · 0 评论 -
【ML】欠拟合(underfitting)和 过拟合(overfitting)实践(基于sklearn)
机器学习 欠拟合(underfitting)和 过拟合(overfitting)实践(基于sklearn)原创 2022-12-25 16:57:36 · 395 阅读 · 0 评论 -
【ML】range、arange和linspace函数
python range函数, numpy arange和linspace函数原创 2022-12-25 14:17:34 · 493 阅读 · 0 评论 -
【ML】numpy ravel、c_、r_函数使用说明(结合实际案例)
【ML】numpy ravel、c_、r_函数使用说明(结合实际案例)原创 2022-12-21 14:51:59 · 338 阅读 · 0 评论 -
【ML】numpy meshgrid函数使用说明(全网最简单版)
【ML】numpy meshgrid函数使用说明原创 2022-12-21 11:24:47 · 848 阅读 · 2 评论 -
【ML】混淆矩阵(Accuracy,Precision,Recall,F1)
机器学习,混淆矩阵,举例说明原创 2022-12-20 17:27:21 · 2020 阅读 · 0 评论 -
【ML】主成分分析 PCA(Principal Component Analysis)原理 + 实践 (基于sklearn)
机器学习 主成分分析 PCA(Principal Component Analysis)原理 + 实践 (基于sklearn)原创 2022-12-19 19:19:01 · 599 阅读 · 0 评论 -
【ML】异常检测(anomaly detection)原理 + 实践 (基于sklearn)
机器学习 异常检测(anomaly detection)原理 + 实践 (基于sklearn)EllipticEnvelope原创 2022-12-19 16:32:52 · 896 阅读 · 0 评论 -
【ML】pandas 处理数据中的非数字列
机器学习 pandas 处理数据中的非数字列原创 2022-12-19 10:50:36 · 503 阅读 · 0 评论 -
【ML】决策树(Decision tree)原理 + 实践 (基于sklearn)
机器学习 决策树(Decision tree)原理 + 实践 + 绘制决策树图 (基于sklearn)原创 2022-12-14 14:17:34 · 290 阅读 · 0 评论 -
【ML】Mean-Shift 原理 + 实践(基于sklearn)
机器学习 mean-shift 原理 + 实践原创 2022-12-13 10:28:39 · 403 阅读 · 0 评论 -
【ML】KNN 原理 + 实践(基于sklearn)
机器学习 KNN 原理 + 实践(基于sklearn)原创 2022-12-12 15:17:29 · 570 阅读 · 0 评论 -
【ML】KMeans 原理 + 实践(基于sklearn)
机器学习 KMeans 实践(基于sklearn)原创 2022-12-09 17:55:48 · 526 阅读 · 0 评论 -
【ML】逻辑回归(LogisticRegression)原理+实践(基于sklearn)
机器学习 逻辑回归(LogisticRegression)原理+实践(基于sklearn)原创 2022-12-09 10:26:43 · 519 阅读 · 0 评论 -
【ML】线性回归 [多因子](LinearRegression)实践(基于sklearn)
机器学习 线性回归 多因子(LinearRegression)实践(基于sklearn)原创 2022-12-08 15:31:37 · 804 阅读 · 0 评论 -
【ML】线性回归 [单因子](LinearRegression)实践(基于sklearn)
机器学习 线性回归(LinearRegression)实践原创 2022-12-06 12:00:21 · 412 阅读 · 0 评论