【课程】02 土壤水动力学

《土壤水动力学》1987.3 第一章及第二章1~3节

第一章 土壤水的能态——土水势

1.1 概述

当土壤孔隙没有被水充满,土壤区域为非饱和带(也叫包气带),其中的水分为非饱和土壤水,即一般所说的土壤水。当水充满了土壤的全部孔隙,土壤区域为饱和带(也叫饱水带),其中的水分为饱和土壤水,即一般所说的地下水。

土壤水和地下水的共同特点是水分均存在于多孔介质的孔隙中、并在其中运动。目前的趋势是用宏观方法在较大尺度范围内研究多孔介质的孔隙大小及其中水流的平均状况。多孔介质在数学点P处的物理点,是以P点为质心、体积为 Δ V 0 \Delta V_0 ΔV0的体积元(一般取为球体)来表征的。 Δ V 0 \Delta V_0 ΔV0的大小应适中。

P点的孔隙率为
n ( P ) = lim ⁡ Δ V i → Δ V 0 Δ V v i ( P ) Δ V i n(P)=\lim\limits_{\Delta V_i \to \Delta V_0}\frac{\Delta V_{vi}(P)}{\Delta V_i} n(P)=ΔViΔV0limΔViΔVvi(P)
干容重 γ c \gamma_c γc可定义为
γ c ( P ) = lim ⁡ Δ V i → Δ V e Δ M v i ( P ) Δ V i \gamma_c(P)=\lim\limits_{\Delta V_i \to \Delta V_e}\frac{\Delta M_{vi}(P)}{\Delta V_i} γc(P)=ΔViΔVelimΔViΔMvi(P)
在任意点P处下式成立
n = 1 − γ c / ρ s n=1-\gamma_c/\rho_s n=1γc/ρs
充流的各流动要素也定义在物理点P上,如流速 v v v
v = lim ⁡ Δ V → Δ 2 1 Δ A i ∫ Δ A 0 i u d A v v=\lim\limits_{\Delta V \to \Delta^2}\frac{1}{\Delta A_i}\int_{\Delta A_{0i} }udA_v v=ΔVΔ2limΔAi1ΔA0iudAv
在宏观尺度上确定的连续分布的多孔介质的几何要素、运动要素和有关参数,本质上正是由其微观特征确定的。

1.2 土壤水的形态和能态

1.2.1 土壤水的数量——土壤含水率

体积含水率 θ v \theta_v θv
θ v = Δ V w / Δ V 0 \theta_v=\Delta V_w/ \Delta V_0 θv=ΔVw/ΔV0
重量含水率 θ g \theta_g θg
θ g = Δ G w / Δ G g \theta_g = \Delta G_w / \Delta G_g θg=ΔGw/ΔGg
饱和度 w w w
w = Δ V w / Δ V v w = \Delta V_w / \Delta V_v w=ΔVw/ΔVv

1.2.2 土壤水的形态

土壤中水分所承受的作用力常概括为吸附力、吸着力、毛管力和重力。常可区分为以下四种形态:吸湿水、薄膜水、毛管水、重力水。

当土壤中的薄膜水所受土壤介质的吸着力约为15 a t m atm atm时,土壤中的水分便不能为植物根系所吸收,致使植物发生永久性凋萎,因而又称这种土壤含水率为凋萎系数。

1.2.3 土壤水的能态

当说到土壤中某一点的土水势时,是指该物理点体积元内单载数量的士壤水分所具有的势能,所以土水势的单位取决于对土壤水分单位数量的规定方式。

1.3 土水势

1.3.1 土水势概念的热力学基础

用热力学理论来解释土水势,涉及到经典热力学的第-一定律和第二定律。土壤水作为一热力学系统,同样遵循能量守恒的热力学第一定律,即
d Q = d U + P d V + d W ′ dQ=dU+PdV+dW' dQ=dU+PdV+dW
土壤水吉氏自由能的微分方程可写为
d G = V d P − S d T − d W s + d W m + d W g dG=VdP-SdT-dW_s +dW_m+dW_g dG=VdPSdTdWs+dWm+dWg
总土水势 ψ \psi ψ是上述五个分势之和:
ψ = ψ g + ψ p + ψ m + ψ s + ψ T \psi = \psi_g +\psi_p + \psi_m + \psi_s + \psi_T ψ=ψg+ψp+ψm+ψs+ψT

1.3.2 土水势的分势

重力势 ψ g \psi_g ψg是由于重力场的存在而引起的,它决定于土壤水的高度或垂直位置。

土壤中坐标为质量为M的土壤水分所具有的重力势 E g E_g Eg
E g = ± M g z E_g = \pm Mgz Eg=±Mgz
压力势是由于压力场中压力差的存在而引起的。所定义的标准参考状态下的压力为标准大气压或当地大气压。当土壤水分的体积为V,压力差或附加压强为 Δ p \Delta p Δp的土壤水分的压力势 E p E_p Ep
E p = V Δ p E_p =V \Delta p Ep=VΔp
基质势 ψ m \psi_m ψm是由于土壤基质对土壤水分的吸持作用引起的,可概括为吸附作用和毛管作用,参考状态以自由水为标准。由于上壤基质对水分吸持作用的复杂性,目前还不能从理论上导出基质势的定量关系,只能在田间或在实验室内进行测定。基质势为负值。

溶质势 ψ s \psi_s ψs是土壤溶液中所有形式的溶质对土壤水分综合作用的结果。溶质势为负值。溶质势的存在可以用渗透实验来证明。含有一定溶质的单位体积土壤水的溶质势 ψ s \psi_s ψs
ψ s = − c μ R T \psi_s = -\frac{c}{\mu}RT ψs=μcRT
温度势 ψ T \psi_T ψT是由于温度场的温差所引起的。土壤中任一点土壤水分的温度势由该点的温度与标准参考状态的温度之差所决定。由于温差存在而造成的土壤水分运动通量相对而言是很小的,所以,在分析土壤水分运动时,温度势的作用常被忽略。
ψ T = − S e Δ T \psi_T = -S_e \Delta T ψT=SeΔT
对于饱和土壤水,总水势或总水头可写为:
ψ = h ± z \psi = h \pm z ψ=h±z
对于非饱和土壤水,在不考虑气压势的情况下,压力势 ψ p = 0 \psi_p = 0 ψp=0,因此,其总水势 ψ \psi ψ由基质势 ψ m \psi_m ψm和重力势 ψ g \psi_g ψg组成,即
ψ = ψ m ± z \psi = \psi_m \pm z ψ=ψm±z

1.4 土壤水吸力与土壤水分特征曲线

1.4.1 土壤水吸力

研究田间土壤水分运动时,溶质势一般不考虑,因此,一般所说的吸力即指土壤基质的吸力,以符号 s s s表示,按定义它和基质势 ψ m \psi_m ψm的关系是
s = − ψ m s= -\psi_m s=ψm
基质势愈大(负的愈少)则吸力愈低,基质势愈小(负的愈多)则吸力高、土壤水自发的趋势是由吸力低处向吸力高处流动。

1.4.2 土壤水分特征曲线

土壤水的基质势或土壤水吸力是随土壤含水率而变化的,其关系曲线称为土壤水分特征曲线或土壤持水曲线。

饱和土壤开始排水意味着空气随之进入土壤中,称该临界值 S a S_a Sa为进气吸力或称为进气值。

一般地说,粗质地的砂性土壤或结构良好的土壤其进气值是较小的,而细质地的粘性土壤其进气值相对较大。由于粗质地砂性土壤的孔隙大小较为均一,故进气值的出现往往较细质地上壤明显。

为了分析应用的方便,常用实测结果拟合出经验关系。常用的经验公式形式有
s = a ( θ / θ s ) b s = a(\theta / \theta_s)^b s=a(θ/θs)b

土壤水分特征曲线受多种因素影响。不同质地的土壤,其水分特征曲线各不相同,差别很明显。一般说,土壤的粘粒含量愈高,同一吸力条件下土壤的含水率愈大,或同一含水率下其吸力值愈高。水分特征曲线还受土壤结构的影响,在低吸力范围内尤为明显。土壤愈密实,则大孔隙数量愈减少,而中小孔径的孔隙愈增多。因此,在同一吸力值下,干容重愈大的土壤,相应的含水率一般也要大些。

土壤水分特征曲线还和土壤中水分变化的过程有关。

滞后现象:土壤脱湿过程和土壤吸湿过程测得的水分特征曲线是不同的。

1.4.3 土壤水分特征曲线的应用

土壤水分特征曲线表示了土壤的一个基本特性,有重要的实用价值。由于滞后作用的存在,进行换算时要谨慎。

土壤水分特征曲线可以问接地反映出土壤中孔隙大小的分布。若将土壤中的孔隙设想为各种孔径的圆形毛管,那么吸力 s s s和毛管直径 d d d的关系可简单表示为
s = 4 σ / d s = 4 \sigma /d s=4σ/d
水分特征曲线可用来分析不同质地土壤的持水性和土壤水分的有效性。同一吸力下,粘土的含水率较砂土的含水率为大的事实,说明了粘土的持水性较砂土的持水性为好。含水率相同时,粘土的土壤水吸力远较砂土为高。

第二章 土壤水动力学基本方程

2.1 非饱和土壤水流动的达西定律

2.1.1 饱和土壤水流动的达西定律

达西定律
v = K s Δ H L v=K_s \frac{\Delta H}{L} v=KsLΔH
非均质土壤
q = − K s d H d L q = -K_s \frac{dH}{dL} q=KsdLdH
三维空间
q = − K s ▽ H q = -K_s \bigtriangledown H q=KsH
达西定律只适用于层流状态,紊流时不再适用。在极低流速和细孔中的流动也可能出现偏离达西定律的情况。

2.1.2 非饱和土壤水流动的达西定律

最早将达西定律引入非饱和土壤水流动的是Richards(1931)。非饱和流动的达西定律可表示为
q = − K ( ψ m ) ▽ ψ 或 q = − K ( θ ) ▽ ψ q = - K(\psi_m) \bigtriangledown \psi 或 q = -K(\theta) \bigtriangledown \psi q=K(ψm)ψq=K(θ)ψ
对于非饱和土壤水,不能笼统地说水由位置高处流向位置低处,或水由湿处移向干处,流动遵循的唯一的原则是自土水势高处向土水势低处运移。

当土壤处于饱和状态时,全部孔隙都充满了水,因而具有较高的导水率值,且为常数。非饱和土壤的导水率K又称为水力传导度,由于土壤中部分孔隙为气体所充填,故其值低于该土壤的饱和导水率。不仅如此,非饱和土壤水的导水率K还是土壤水基质势或含水率的函数。它随基质势(或含水率>的减小而降低,主要原因是:水流在小孔隙中流动,受阻力增大,流程增大,故导水率降低。

2.1.3 非饱和土壤的导水率

通过实验测定非饱和土壤的导水率随含水量或基质势的变化关系,需通过实验测定。

非饱和土壤的导水率K值大小显然与上壤质地有关。一般地说,砂性土壤的导水率比粘性土壤的要大。但是,当吸力值很高时,由于砂性土壤中绝大部分孔隙中的水被排空,成为不导水的孔隙,此时砂性土壤的导水率反而会比粘性土壤的导水率为低。

非饱和流动的达西定律可写成
q = − K ( θ ) ( ▽ ψ m ± ▽ z ) q = - K(\theta)(\bigtriangledown \psi_m \pm \bigtriangledown z) q=K(θ)(ψm±z)

2.2 非饱和土壤水运动基本方程

2.2.1 质量守恒原理与基本方程的推导

达西定律和连续方程相结合便导出了描述土壤水分运动的基本方程
∂ θ ∂ t = ∂ ∂ x [ K ( θ ) ∂ ψ m ∂ x ] + ∂ ∂ y [ K ( θ ) ∂ ψ m ∂ y ] + ∂ ∂ z [ K ( θ ) ∂ ψ m ∂ z ] ± ∂ K ( θ ) ∂ z \frac{\partial\theta}{\partial t} = \frac{\partial}{\partial x}[K(\theta)\frac{\partial \psi_m}{\partial x}] + \frac{\partial}{\partial y}[K(\theta)\frac{\partial \psi_m}{\partial y}] + \frac{\partial}{\partial z}[K(\theta)\frac{\partial \psi_m}{\partial z}]\pm \frac{\partial K(\theta)}{\partial z} tθ=x[K(θ)xψm]+y[K(θ)yψm]+z[K(θ)zψm]±zK(θ)
对于饱和土壤来说,土壤孔隙已为水充满,其含水率即饱和含水率 θ s \theta_s θs,在数值上 θ s \theta_s θs与土壤孔隙度 n n n相等,此时含水率不随时间变化, ∂ θ ∂ t = 0 \frac{\partial\theta}{\partial t} =0 tθ=0,由上式可得出
▽ 2 ψ = 0 \bigtriangledown^2 \psi = 0 2ψ=0

2.2.2 基本方程的各种形式

1.以基质势 ψ m \psi_m ψm为因变量的基本方程
C ( ψ m ) ∂ ψ m ∂ t = ∂ ∂ x [ K ( ψ m ) ∂ ψ m ∂ x ] + ∂ ∂ y [ K ( ψ m ) ∂ ψ m ∂ y ] + ∂ ∂ z [ K ( ψ m ) ∂ ψ m ∂ z ] + ∂ K ( ψ m ) ∂ z C(\psi_m)\frac{\partial \psi_m}{\partial t} = \frac{\partial}{\partial x}[K(\psi_m)\frac{\partial \psi_m}{\partial x}] + \frac{\partial}{\partial y}[K(\psi_m)\frac{\partial \psi_m}{\partial y}] + \frac{\partial}{\partial z}[K(\psi_m)\frac{\partial \psi_m}{\partial z}] + \frac{\partial K(\psi_m)}{\partial z} C(ψm)tψm=x[K(ψm)xψm]+y[K(ψm)yψm]+z[K(ψm)zψm]+zK(ψm)
2.以含水率 θ \theta θ为因变量的基本方程
∂ θ ∂ t = ∂ ∂ x [ D ( θ ) ∂ ψ m ∂ x ] + ∂ ∂ y [ D ( θ ) ∂ ψ m ∂ y ] + ∂ ∂ z [ D ( θ ) ∂ ψ m ∂ z ] + ∂ K ( θ ) ∂ z \frac{\partial\theta}{\partial t} = \frac{\partial}{\partial x}[D(\theta)\frac{\partial \psi_m}{\partial x}] + \frac{\partial}{\partial y}[D(\theta)\frac{\partial \psi_m}{\partial y}] + \frac{\partial}{\partial z}[D(\theta)\frac{\partial \psi_m}{\partial z}] + \frac{\partial K(\theta)}{\partial z} tθ=x[D(θ)xψm]+y[D(θ)yψm]+z[D(θ)zψm]+zK(θ)
3.以位置坐标 x x x z z z为因变量的基本方程
− ∂ x ∂ t = ∂ ∂ θ [ D ( θ ) / ∂ x ∂ θ ] -\frac{\partial x}{\partial t} = \frac{\partial}{\partial \theta}[D(\theta) /\frac{\partial x}{\partial \theta}] tx=θ[D(θ)/θx]
4.以参数 u u u为因变量的基本方程
∂ u ∂ t = D ( θ ) ∂ 2 u ∂ x 2 \frac{\partial u}{\partial t} = D(\theta) \frac{\partial^2 u}{\partial x^2} tu=D(θ)x22u
5.以参数 v v v为因变量的基本方程
1 D ( v ) ∂ v ∂ t = ∂ 2 v ∂ z 2 + M ( v ) ∂ v ∂ z \frac{1}{D(v)}\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial z^2} + M(v) \frac{\partial v}{\partial z} D(v)1tv=z22v+M(v)zv
上述各种形式的土壤水分运动方程,只适用于土壤骨架不变形、土壤水视为不可压缩的流休、不考虑生物或化学作用对水流影响的情祝,不能用于解决多相(如水与气流的问题。

2.2.3 柱坐标及球坐标系中土壤水分运动的基本方程

1.以 z z z轴为轴的柱坐标系的基本方程
∂ θ ∂ t = 1 γ ∂ ∂ γ [ γ K ( θ ) ∂ ψ m ∂ γ ] + 1 γ 2 ∂ ∂ φ [ D ( θ ) ∂ ψ m ∂ φ ] + ∂ ∂ z [ D ( θ ) ∂ ψ m ∂ z ] + ∂ K ( θ ) ∂ z \frac{\partial\theta}{\partial t} = \frac{1}{\gamma}\frac{\partial}{\partial \gamma}[\gamma K(\theta)\frac{\partial \psi_m}{\partial \gamma}] + \frac{1}{\gamma^2} \frac{\partial}{\partial \varphi}[D(\theta)\frac{\partial \psi_m}{\partial \varphi}] + \frac{\partial}{\partial z}[D(\theta)\frac{\partial \psi_m}{\partial z}] + \frac{\partial K(\theta)}{\partial z} tθ=γ1γ[γK(θ)γψm]+γ21φ[D(θ)φψm]+z[D(θ)zψm]+zK(θ)
2.以 x x x(或 y y y)轴为轴的柱坐标系的基本方程
∂ θ ∂ t = 1 γ ∂ ∂ γ [ γ K ( θ ) ∂ ψ m ∂ γ ] + 1 γ 2 ∂ ∂ φ [ D ( θ ) ∂ ψ m ∂ φ ] + c o s φ ∂ K ( θ ) ∂ γ − s i n φ γ ∂ K ( θ ) ∂ φ + ∂ ∂ x [ D ( θ ) ∂ ψ m ∂ x ] \frac{\partial\theta}{\partial t} = \frac{1}{\gamma}\frac{\partial}{\partial \gamma}[\gamma K(\theta)\frac{\partial \psi_m}{\partial \gamma}] + \frac{1}{\gamma^2} \frac{\partial}{\partial \varphi}[D(\theta)\frac{\partial \psi_m}{\partial \varphi}]+ cos\varphi\frac{\partial K(\theta)}{\partial \gamma} -\frac{sin \varphi}{\gamma}\frac{\partial K(\theta)}{\partial \varphi} + \frac{\partial}{\partial x}[D(\theta)\frac{\partial \psi_m}{\partial x}] tθ=γ1γ[γK(θ)γψm]+γ21φ[D(θ)φψm]+cosφγK(θ)γsinφφK(θ)+x[D(θ)xψm]
3.球坐标系中的基本方程
∂ θ ∂ t = 1 γ ∂ ∂ γ [ γ K ( θ ) ∂ ψ m ∂ γ ] + 1 ( γ s i n α ) 2 ∂ ∂ φ [ K ( θ ) ∂ ψ m ∂ φ ] + 1 γ 2 ∂ ∂ α [ K ( θ ) ∂ ψ m ∂ α ] + c o s α ∂ K ( θ ) ∂ γ − s i n α γ ∂ K ( θ ) ∂ α \frac{\partial\theta}{\partial t} = \frac{1}{\gamma}\frac{\partial}{\partial \gamma}[\gamma K(\theta)\frac{\partial \psi_m}{\partial \gamma}] + \frac{1}{(\gamma sin \alpha)^2} \frac{\partial}{\partial \varphi}[K(\theta)\frac{\partial \psi_m}{\partial \varphi}]+ \frac{1}{\gamma^2}\frac{\partial}{\partial \alpha}[K(\theta)\frac{\partial \psi_m}{\partial \alpha}] + cos\alpha\frac{\partial K(\theta)}{\partial \gamma} -\frac{sin \alpha}{\gamma}\frac{\partial K(\theta)}{\partial \alpha} tθ=γ1γ[γK(θ)γψm]+(γsinα)21φ[K(θ)φψm]+γ21α[K(θ)αψm]+cosαγK(θ)γsinααK(θ)

2.3 土壤水分运动通量法

土壤水分通量法可以不使用基本方程而直接应用达西定律和质量守恒原理分析或解决问题。

无源汇情况下的水量平衡方程为
Q ( z ∗ ) − Q ( z ) = ∫ z ∗ z θ ( z , t 2 ) d z − ∫ z ∗ E θ ( z , t 1 ) d z Q(z^*)-Q(z) = \int_{z^*}^{z}\theta(z,t_2)dz - \int_{z^*}^{E}\theta(z,t_1)dz Q(z)Q(z)=zzθ(z,t2)dzzEθ(z,t1)dz

2.3.1 零通量面与零通量面法

土壤剖面中出现零通量面时,可根据水势 ψ \psi ψ的分布特点,区分为以下几种类型:

1.单一聚合型零通量面

2.单一发散型零通量面

3.具有多个零通量面

2.3.2 表面通量法与定位通量法

零通量面不存在时,若能估算或测量某一断面的土壤水分通量作为已知通量面,则可使用表面通量法和定位通量法计算入渗量或蒸发量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卢家波

如果对你有帮助,请我喝杯茶吧

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值