行人重识别0-10:DG-Net(ReID)-代码无死角解读(6)-lsgan损失及教师网络

本文详细解读了DG-Net在行人重识别任务中的应用,重点分析了LSGAN损失函数及其作用,同时介绍了教师网络在网络训练中的角色。通过对生成器和鉴别器的优化过程,阐述了如何通过损失函数来改进模型性能。
摘要由CSDN通过智能技术生成

以下链接是个人关于DG-Net(行人重识别ReID)所有见解,如有错误欢迎大家指出,我会第一时间纠正。有兴趣的朋友可以加微信:17575010159 相互讨论技术。若是帮助到了你什么,一定要记得点赞!因为这是对我最大的鼓励。
行人重识别0-00:DG-GAN(ReID)-目录-史上最新最全:https://blog.csdn.net/weixin_43013761/article/details/102364512

极度推荐的商业级项目: \color{red}{极度推荐的商业级项目:} 极度推荐的商业级项目&

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

江南才尽,年少无知!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值