Segmentation of Sidescan Sonar Imagery Using Markov Random Fields and Extreme Learning Machine

Segmentation of Sidescan Sonar Imagery Using Markov Random Fields and Extreme Learning Machine

利用马尔可夫随机场和极限学习机侧扫声纳图像分割

介绍

本文提出了一种基于MRF和ELM的分割侧扫声纳图像的新方法,作用在高光区、阴影区和海底混响区域。具体来说,本文是使用ELM来获得MRF的初始模型;为了提高ELM的稳定性,利用基于集成算法的简单继承ELM(SE-ELM)来获得预测模型;在SE-ELM中,使用ELM和多数票的组合来确定测试数据集的预测,然后使用SE-ELM的分类结果初始化MRF,成为SE-ELM-MRF。

作为一种广泛使用的分割方案,马尔可夫随机场(MRF)利用k-means聚类计算出用于侧扫声纳图像分割的初始模型。然而,由于侧扫声纳图像的噪声和强度不均匀性,k-means聚类的分割结果精度较低,这促使我们使用机器学习方法来初始化MRF。ELM源自单隐层前馈神经网络(SLFN),优点包括ELM的隐藏层参数可以随机生成,并且学习速度比支持向量机(SVM)更快,并且可以获得更高的精度。因此,在本文中,我们提出了一种基于ELM的初始化方法,以获得更好的MRF初始模型。

Extreme Learning Machine
ELM源自SLFN据黄等。如果输入权重和隐藏层偏差是随机设置的,并且隐藏层使用无限可微的激活函数,则由ELM训练的SLFN分类器在多类分类情况下可以获得令人印象深刻的泛化性能。
在这里插入图片描述
ELM可以概括在图3中。与大多数现有方法相比,ELM仅更新隐藏层和输出层之间的输出权重,而隐藏层的输入权重和偏差是随机生成的。通过对预测误差采用平方损失,对输出权重的训练变成了正则化的最小二乘(或岭回归)问题,可以用封闭形式有效地解决该问题。已经显示,即使不更新隐藏层的参数,具有随机生成的隐藏神经元和可调输出权重的SLFN仍保持其通用逼近能力。

Kernel-Based Extreme Learning Machine:Huang等人提出一种基于核方法的KELM 以提高原始ELM的泛化能力。

分割方法

在这里插入图片描述
图4显示了整个方法的流程图,它由三个主要部分组成:针对ground truth的手动分割,SE-ELM和SE-ELM-MRF。首先,我们利用手动分割来获得侧面扫描声纳图像的ground truth。然后使用标记的数据集训练SE-ELM。最后,使用SE-ELM的分割结果来初始化MRF,以获得最终的分割结果。

Simple Ensemble Extreme Learning Machine
使用SE-ELM进行声纳图像分类。手动分割的结果用作地面真实图像,以训练监督方法SE-ELM。SE-ELM可以减少由随机生成的隐藏层参数导致的随机性,并提高ELM的性能,从而使其比原始ELM更稳定。在SE-ELM中,几个ELM并行工作,前两步使用k倍交叉验证为每个ELM选择最佳隐藏节点数,并在第三步使用多数投票预测测试数据,E-ELM的流程图如图5所示。
在这里插入图片描述
多数投票是一种非常有用的方法,通常可以取得良好的结果。 但是此方法可能会与二进制分类或多类分类联系在一起。 在本文使用传统的k最近邻法解决了不同类别之间的联系情况。

SE-ELM-Based Markov Random Field
作为一种有监督的方法,SE-ELM可以使用学习的模型对侧扫声纳图像的每个像素进行分类。 它的性能主要取决于训练数据集的质量和SE-ELM的泛化能力。 因此,使用手动分割获得训练数据的地面真相,以保留图像的细节并减少强度不均匀性和噪声的影响。 有了这样的训练数据集,训练有素的SE-ELM对噪声和强度不均匀性的敏感性不如k-均值聚类。 因此,本文使用SE-ELM的结果来计算MRF的初始化参数,从而形成了本文提出的SE-ELM-MRF方法。

实验、结果、分析

Data Sets for Performance Evaluation
九个侧扫声纳图像用于评估该方法的性能。 每个图像在对象高光,对象阴影和背景区域中进行分割。 前三个图像(图7中的a)用于形成训练数据集,而其余六个图像(图9中的A)用于形成六个测试数据集。
在这里插入图片描述
在这里插入图片描述
本文所使用的CNN架构如图6所示:
在这里插入图片描述
为了公平比较,CNN的输入图像的大小为3×3。CNN的输出属于每个输入的中心像素的类别。如图6所示,该CNN包括一层卷积层,一层完全连接层和一层softmax层。 卷积层由32个特征图组成。每个要素图通过大小为3×3的滤波器连接到输入。生成的要素图的大小为1×1。完全连接的层有120个单位,每个单位都与其上一层的所有单位相连。 使用由图7(a)的图像块和图7(d)所示的相应的手动分段地面真相形成的数据集训练CNN。CNN有129832张训练样本[(130-3) x (400-3) x (70-3) + (500-3) x (170-3) + (170-3) x (270-3) = 129832] (PS:不明白这个数字是怎么列出来的)

Experimental Results
在本文中,每个特征向量都包含九个像素值。 如图8所示,令图7(d)中的目标像素T(r1,r2)的位置为(r1,r2),图7(a)中的(r1,r2)周围的局部图像的像素块的3×3尺寸被选为特征。 然后,将局部图像块重新整形为行特征向量。 本文中使用的训练样本数量大致等于训练图像像素的数量。
在这里插入图片描述
(PS:这一步不懂)

MRF的分割结果
在这里插入图片描述
在这里插入图片描述
从图9和表II中可以看到,k均值聚类的结果比较嘈杂,这可能导致计算成本较高,并且MRF分割性能较差。

SE-ELM的分割结果
为了验证SE-ELM的有效性,原始训练数据集中的10%样本用作验证数据集,其余部分用作训练数据集。图10表明ELM和SE-ELM在验证数据集上分别进行50倍操作时的实验结果,SE-ELM的分类结果比ELM更好、更稳定。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
MRF后处理的分割结果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

总结
本文提出了一种基于SE-ELM和MRF的新型SE-ELM-MRF方法,用于侧扫声纳图像分割。为了验证SE-ELM和SE-ELM-MRF的性能,在我们的实验中使用了由美国弗吉尼亚州约克镇的Marine Sonic收集的九个真实侧扫声纳图像。此外,为了证明SE-ELM-MRF的泛化性能,使用了从三个不同海底获得的六个侧扫声纳图像。实验结果表明,SE-ELM在侧扫声纳分割中表现出比ELM,KELM,SVM和CNN更好的性能。此外,使用SE-ELM作为初始分割算法而不是k-means聚类,SE-ELM-MRF在分割精度和收敛速度方面均优于MRF。通过在不同位置声纳图像上的良好分割结果,验证了SE ELM-MRF的泛化性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值