最终定义 损失函数 Loss function:L(w,b)= \sum_{n=1}^{10}\left ( \hat{y}^n - (b + w·x_{cp}) \right )^2L(w,b)=∑n=110(y^n−(b+w⋅xcp))2
重要的损失函数!
最重要的梯度下降公式。
回归里面重要内容:
选择初始W和b,进行梯度下降迭代。设定阈值。最后输出结果
最终定义 损失函数 Loss function:L(w,b)= \sum_{n=1}^{10}\left ( \hat{y}^n - (b + w·x_{cp}) \right )^2L(w,b)=∑n=110(y^n−(b+w⋅xcp))2
重要的损失函数!
最重要的梯度下降公式。
回归里面重要内容:
选择初始W和b,进行梯度下降迭代。设定阈值。最后输出结果