贝叶斯公式及概率推理

在统计分析,特别是近来很热门的机器学习领域,贝叶斯公式在其中起来重要作用。本文对其中几个关键点进行了解释。

一、 贝叶斯公式

π ( θ ∣ x ) = π ( θ ) ∗ f ( x ∣ θ ) ∫ p ( x , θ ) d θ \pi\left(\theta\mid{x}\right)=\frac{\pi(\theta)*f(x\mid{\theta})}{\int{p(x,\theta)d\theta}} π(θx)=p(x,θ)dθπ(θ)f(xθ) = π ( θ ) ∗ f ( x ∣ θ ) ∫ p ( θ ) f ( x ∣ θ ) d θ =\frac{\pi(\theta)*f(x\mid{\theta})}{\int{p(\theta)f(x\mid\theta)d\theta}} =p(θ)f(xθ)dθπ(θ)f(xθ)

其中: π ( θ ) \pi(\theta) π(θ)是先验概率,在贝叶斯统计推断中表示 研究者对 θ \theta θ的主观认识,不同的研究者对同一个问题可能采用不同的模型。由于它带有强烈的主观色彩,是研究者的个人信念,在实际中经常会引起置疑。这一点也是贝叶斯统计方法与基于频率的统计方法的重大不同所在。
x x x观察值,通常假定它是一个由 f ( x ∣ θ ) f(x\mid\theta) f(xθ)分布密度所确定的随机样本。公式的分母是 x x x边缘分布
π ( θ ∣ x ) \pi\left(\theta\mid{x}\right) π(θx)后验分布 f ( x ∣ θ ) f(x\mid\theta) f(xθ)似然

对公式的解释

该公式是求取当获得新的观察值 x x x后,对关于 θ \theta θ的先验分布的修正,即后验概率。

也就是说,随着新的观察值的不断获得,关于 θ \theta θ的知识在不断地改变,亦即从 π ( θ ) \pi(\theta) π(θ) π ( θ ∣ x ) \pi\left(\theta\mid{x}\right) π(θx),这点也是统计推断的主要含义。

二、预测性推理

p ( y ∣ x ) = ∫ f ( y ∣ θ ) π ( θ ∣ x ) d θ = E π ( f ( y ∣ θ ) ∣ x ) \hspace{3cm}p(y\mid{x})=\int f(y\mid\theta)\pi(\theta\mid{x})d\theta=E_\pi(f(y\mid\theta)\mid{x}) p(yx)=f(yθ)π(θx)dθ=Eπ(f(yθ)x)

这里 y y y是已知 x x x时,对未来样本的预测。

p ( y ∣ x ) \hspace{1.3cm}p(y\mid{x}) p(yx)是抽样分布 f ( y ∣ θ ) f(y\mid\theta) f(yθ)依后验分布 π ( θ ∣ x ) \pi\left(\theta\mid{x}\right) π(θx)的期望值,反映了研究者的置信度。将之看成是期望值具有现实的好处,即提供了具体的实现方法,在实际估计 p ( y ∣ x ) p(y\mid{x}) p(yx)时可以采用求样本均值的方法来做。

三、共轭先验(Conjugate Priors)

共轭先验是一种在数学上方便的指定先验模型的方法。 通过导致计算上可处理的后验分布,它们使得贝叶斯统计分析易于实现。该概念在贝叶斯统计推断中具有重要作用。

下面给出其定义:

假定 F = { f ( ⋅ ∣ θ ) ; ∀ θ ∈ Θ } \mathscr F = \left\{ f(\cdot\mid\theta);\forall\theta \in\Theta\right\} F={f(θ);θΘ}是采样分布的参数化模型类。 P = { π ( ⋅ ∣ τ ) ; ∀ τ } \mathscr P = \left\{ \pi(\cdot\mid\tau);\forall\tau\right\} P={π(τ);τ} θ \theta θ的先验分布(注意:这里的 τ \tau τ是说明参数 θ \theta θ本身可能也是一个参数化模型,这是的参数是 τ \tau τ,不要与后验分布 π ( θ ∣ x ) \pi\left(\theta\mid{x}\right) π(θx)搞混了。

称类 P \mathscr P P F \mathscr F F 的共轭,如果满足:

π ( θ ∣ x ) ∈ P , ∀ f ( ⋅ ∣ θ ) ∈ F a n d π ( ⋅ ) ∈ P \hspace{3cm}\pi(\theta\mid{x})\in \mathscr P,\forall{f(\cdot\mid\theta)\in\mathscr F}{\hspace{0.3cm}and }\hspace{0.3cm}\pi(\cdot)\in\mathscr P π(θx)P,f(θ)Fandπ()P

说明:简单地说,如果选择先验分布与参数化模型共轭,则通过贝叶斯公式计算得到的后验分布与先验分布具有同样的形式,从而新的观察值获得后,只是影响后验分布的参数,不需要每次都用贝叶斯公式进行计算,只是更新参数即可,也就是说可以简化推理过程。这是引入共轭分布概念的主要原因。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值