PyTorch版本更新后无法调用GPU显卡的原因及解决办法

Index 目录索引

问题剖析

使用PyTorch在网络模型训练过程中,如果更新了PyTorch的版本(例如由1.7.0更新为1.8.1),则可能会出现无法使用GPU的情况,下面是查看cuda是否可用的代码命令:

import torch

print(torch.__version__)
print(torch.cuda.is_available())
print(torch.version.cuda)

可得到下面的结果:

1.8.1+cpu
False
None

由此可知,PyTorch更新至1.8.1后,cuda未能正常调用,而奇怪的是,在1.7.0旧版本PyTorch的环境中,就可以正常调用,显示如下:

1.7.0+cu110
True
11.0

说明显卡硬件并未出现异常,推测有可能是更新后版本不匹配的原因。

经过查阅资料,得知出现这种情况的原因是当前的PyTorch版本和cuda版本不匹配1,所以无法使用显卡

解决方法

根据这个网址,可以查看PyTorch不同版本所对应的cuda
在这里插入图片描述找到更新后的PyTorch版本号1.8.1所在的位置,可知对应的cuda版本有两个,分别是10.211.3,不妨将cuda由原来的11.0更新至11.3,所以输入对应的命令:

conda install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 cudatoolkit=11.3 -c pytorch -c conda-forge

更新过程如下:

(wl_pytorch1_8) D:\***-main>conda install pytorch==1.8.1 torchvision==0.9.1 torchaudio==0.8.1 cudatoolkit=11.3 -c pytorch -c conda-forge
Collecting package metadata (current_repodata.json): done
Solving environment: failed with initial frozen solve. Retrying with flexible solve.
Solving environment: failed with repodata from current_repodata.json, will retry with next repodata source.
Collecting package metadata (repodata.json): done
Solving environment: done

## Package Plan ##
...
...

(以上未测试)

首先使用Anaconda新创建一个 env环境,在这个新环境中进行PyTorch及其他库的更新。

接着,参考之前的这篇文章,下载文件torch-1.8.1+cu102-cp37-cp37m-win_amd64.whl
,离线进行PyTorchcuda的安装(该方法可直接通过代码命令安装cuda),将cuda版本由原来的11.0降至10.2

在这里插入图片描述

安装完成后,输出如下:

1.8.1+cu102
True
10.2

接下来,便可接着在新的环境中调用显卡进行深度学习模型的训练。


写到这里,本文就要接近尾声了,如果我的这篇文章帮助到了你,那我也会感到很高兴,一个人能走多远,在于与谁同行


参考


  1. Pytorch错误:Torch not compiled with CUDA enabled ↩︎

### 解决 PyTorch 程序无法调用 GPU 的问题 #### 1. 检查 GPU 计算能力兼容性 如果用户的 GPU 是 GeForce GTX 780 Ti,则其计算能力为 3.5。然而,当前版本PyTorch 支持的最低计算能力为 3.7[^1]。这表明该 GPU 不被最新版 PyTorch 所支持,因此可能会导致程序无法正常调用 GPU。 #### 2. 验证安装环境中的依赖关系 在某些情况下,Linux 系统上的包管理器可能存在问题,例如未满足的依赖项。错误消息 `'Error:BrokenCount>0'` 表明已安装的软件包存在未解决的依赖关系[^2]。这种问题可能导致 CUDA 或其他必要的库未能正确加载,从而影响 PyTorchGPU 的访问。 #### 3. 安装适合旧硬件的 PyTorch 版本 为了使 PyTorch 能够运行于较低计算能力的 GPU 上,可以尝试安装早期版本PyTorch。这些版本通常支持更低的计算能力标准。可以通过以下命令来指定安装特定版本: ```bash pip install torch==1.9.0+cu102 torchvision==0.10.0+cu102 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html ``` 上述命令适用于 CUDA 10.2 和较早版本PyTorch,具体版本号可以根据实际需求调整。 #### 4. 使用 CPU 进行调试 如果暂时无法更新硬件或适配合适的 PyTorch 版本,可以选择仅使用 CPU 来执行代码作为临时解决方案。通过设置 `device` 参数为 `"cpu"` 即可实现这一点: ```python import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = YourModel().to(device) ``` 此方法不会利用 GPU 加速,但在开发阶段可以帮助验证模型逻辑是否正确。 #### 5. 更新显卡驱动并重新配置 CUDA 工具链 有时即使 GPU 符合要求,也可能因为过时的显卡驱动或不匹配的 CUDA 工具链而导致问题。建议按照 NVIDIA 提供的指南更新到最新的稳定驱动版本,并确认所选的 PyTorch 构建与之相适应。 --- ### 总结 针对 GeForce GTX 780 Ti 的情况,由于其计算能力低于目前主流 PyTorch 发布的支持门槛 (3.7),推荐降级至更老版本PyTorch 并确保所有系统组件保持一致性和稳定性。同时注意修复任何潜在的操作系统级别冲突以保障整体性能表现良好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值