课堂学习笔记 传统机器学习 数据预处理–归一化、降维、去躁特征提取–图像:SIFT、LBP、Fisher,语言:Word2vec、MFCC选择分类器–SVM、决策树、随机森林、贝叶斯网络、线性回归、聚类 深度机器学习 数据准备–数据、label设计模型–CNN、RNN训练–调结构、损失函数、训练参数 基本概念 y = W ∗ X + b y = W*X+b y=W∗X+b神经元:模型的基本单位卷积核:图像处理基本算子分类回归