[电路笔记]一阶电路和二阶电路的时域分析

本文详细探讨了一阶电路和二阶电路的时域分析,包括动态电路的方程、初始条件、零输入响应、零状态响应、全响应、三要素法以及冲激响应和阶跃响应。通过具体例子解释了如何利用常微分方程解决电路问题,重点阐述了不同电路响应的计算方法和特性判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态电路的方程及其初始条件

动态电路即指含有电容电感等动态原件的电路,在条件发生变化时(如加入激励源、阶跃响应等),电路响应发生变化。电路响应发生变化的时间很短,在0-—0+之间,这个过渡过程就叫做换路。
所谓动态电路,也即能够用常微分方程来描述的电路,本文讨论分别用一阶常微分方程和二阶常微分方程来描述的一阶动态电路和二阶动态电路。
我们在分析的过程中将 iL(0+) 和 uc(0+) 作为独立的初始条件(在后续的求解中先求出独立的初始条件),其余均为非独立的初始条件。
对于电容:
u c ( t ) = u c ( t 0 ) + 1 / C ∫ 0 t i c d t u_c(t) = u_c(t_0)+1/C\int_0^t i_cdt uc(t)=uc(t0)+1/C0ticdt
u c ( 0 + ) = u c ( 0 − ) + 1 / C ∫ 0 − 0 + i c d t u_c(0_+)=u_c(0_-)+1/C\int_{0_-}^{0_+} i_cdt uc(0+)=uc(0)+1/C00+icdt
对电感:
i L ( t ) = i L ( t 0 ) + 1 / L ∫ 0 t u L d t i_L(t) = i_L(t_0)+1/L\int_0^tu_Ldt iL(t)=iL(t0)+1/L0tuLdt
i L ( 0 + ) = i L ( 0 − ) + 1 / L ∫ 0 − 0 + u L d t i_L(0_+)=i_L(0_-)+1/L\int_{0_-}^{0_+}u_Ldt iL(0+)=iL(0)+1/L00+uLdt

(上述几个公式很重要,在如冲激激励时可直接套用计算)
由于 ic 有限,uc不能跳变,同理可用于 uL,iL

于是就有换路定理:
u c ( 0 + ) = u c ( 0 − ) u_c(0_+)=u_c(0_-) uc(0+)=uc(0)
i L ( 0 + ) = i L ( 0 − ) i_L(0_+)=i_L(0_-) iL(0+)=iL(0)

于是,在换路瞬间,电容可以看作电压源或视为短路;电感可以看作电流源或视为开路

!!!但在电路达到稳态时,电容视为

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值