目录
动态电路的方程及其初始条件
动态电路即指含有电容、电感等动态原件的电路,在条件发生变化时(如加入激励源、阶跃响应等),电路响应发生变化。电路响应发生变化的时间很短,在0-—0+之间,这个过渡过程就叫做换路。
所谓动态电路,也即能够用常微分方程来描述的电路,本文讨论分别用一阶常微分方程和二阶常微分方程来描述的一阶动态电路和二阶动态电路。
我们在分析的过程中将 iL(0+) 和 uc(0+) 作为独立的初始条件(在后续的求解中先求出独立的初始条件),其余均为非独立的初始条件。
对于电容:
u c ( t ) = u c ( t 0 ) + 1 / C ∫ 0 t i c d t u_c(t) = u_c(t_0)+1/C\int_0^t i_cdt uc(t)=uc(t0)+1/C∫0ticdt
u c ( 0 + ) = u c ( 0 − ) + 1 / C ∫ 0 − 0 + i c d t u_c(0_+)=u_c(0_-)+1/C\int_{0_-}^{0_+} i_cdt uc(0+)=uc(0−)+1/C∫0−0+icdt
对电感:
i L ( t ) = i L ( t 0 ) + 1 / L ∫ 0 t u L d t i_L(t) = i_L(t_0)+1/L\int_0^tu_Ldt iL(t)=iL(t0)+1/L∫0tuLdt
i L ( 0 + ) = i L ( 0 − ) + 1 / L ∫ 0 − 0 + u L d t i_L(0_+)=i_L(0_-)+1/L\int_{0_-}^{0_+}u_Ldt iL(0+)=iL(0−)+1/L∫0−0+uLdt
(上述几个公式很重要,在如冲激激励时可直接套用计算)
由于 ic 有限,uc不能跳变,同理可用于 uL,iL。
于是就有换路定理:
u c ( 0 + ) = u c ( 0 − ) u_c(0_+)=u_c(0_-) uc(0+)=uc(0−)
i L ( 0 + ) = i L ( 0 − ) i_L(0_+)=i_L(0_-) iL(0+)=iL(0−)
于是,在换路瞬间,电容可以看作电压源或视为短路;电感可以看作电流源或视为开路。
!!!但在电路达到稳态时,电容视为