[电路笔记]三相电路

本文详细介绍了三相电路的基础知识,包括对称三相电源的Y形和Δ形连接,线值与相值的关系,以及对称三相电路的计算方法。还探讨了不对称三相电路的分析,中性点位移和三相电路的功率计算。通过二瓦计法展示了在三相三线制中测量功率的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三相电路

三相电路包括三相电源、三相负载和三相输电线路。

对称三相电源

对称三相电源是由三个同频率等幅值、相位依次落后于初相120°的电源连接成星形(Y)或三角形(Δ)组成的电源。
Y形连接和Δ形连接的三相电源如下图所示,其中N-N’为中性线。
在这里插入图片描述

A、B、C分别为三相电源,则有
u A = U c o o s w 、 U A ⃗ = U ∠ 0 ° u_A=Ucoosw、 \vec{U_A}=U\angle{0°} uA=UcooswUA =U0°
u B = U c o s ( w − 120 ° ) 、 U B ⃗ = U ∠ − 120 ° u_B=Ucos(w-120°)、\vec{U_B}=U\angle{-120°} uB=Ucos(w120°)UB =U120°
u C = U c o s ( w + 120 ° ) 、 U C ⃗ = U ∠ 120 ° u_C=Ucos(w+120°)、\vec{U_C}=U\angle{120°} uC=Ucos(w+120°)UC =U120°
在这里插入图片描述
由上图可知
u A + u B + u C = 0 、 U A ⃗ + U B ⃗ + U C ⃗ = 0 u_A+u_B+u_C=0、\vec{U_A}+\vec{U_B}+\vec{U_C}=0 uA+uB+uC=0UA +UB +UC =0
(注:ABC为正序,较为常用,CBA为逆序

三相负载

三个阻抗连接成星形或角形即构成星形负载和角形负载。
示例如下,其中,Zl和ZN为端线负载,若将N-N’连接,则为三相四线制,其余为三相三线制。
在这里插入图片描述
通常,三相电源、三相端线阻抗(不含ZN)均对称,三相负载则不一定对称。

以下给出负载星角变换的公式:
在这里插入图片描述
角变星:
{ R 1 = R 31 R 12 R 12 + R 23 + R 31 R 2 = R 12 R 23 R 12 + R 23 + R 31 R 3 = R 23 R 31 R 12 + R 23 + R 31 \begin{cases} R_1=\frac{R_{31}R_{12}}{R_{12}+R_{23}+R_{31}} \\R_2=\frac{R_{12}R_{23}}{R_{12}+R_{23}+R_{31}} \\ R_3=\frac{R_{23}R_{31}}{R_{12}+R_{23}+R_{31}}\end{cases} R1=R12+R23+R31R31R12R2=R12+R23+R31R12R23R3=R12+R23+R31R23R31

星变角:
{ R 12 = R 1 R 2 + R 2 R 3 + R 3 R 1 R 3 R 23 = R 1 R 2 + R 2 R 3 + R 3 R 1 R 1 R 31 = R 1 R 2 + R 2 R 3 + R 3 R 1 R 2 \begin{cases} R_{12}= \frac{R_1R_2+R_2R_3+R_3R_1}{R_3} \\ R_{23}= \frac{R_1R_2+R_2R_3+R_3R_1}{R_1} \\R_{31}=\frac{R_1R_2+R_2R_3+R_3R_1}{R_2}\end{cases}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值