三相电路
三相电路包括三相电源、三相负载和三相输电线路。
对称三相电源
对称三相电源是由三个同频率、等幅值、相位依次落后于初相120°的电源连接成星形(Y)或三角形(Δ)组成的电源。
Y形连接和Δ形连接的三相电源如下图所示,其中N-N’为中性线。
A、B、C分别为三相电源,则有
u A = U c o o s w 、 U A ⃗ = U ∠ 0 ° u_A=Ucoosw、 \vec{U_A}=U\angle{0°} uA=Ucoosw、UA=U∠0°
u B = U c o s ( w − 120 ° ) 、 U B ⃗ = U ∠ − 120 ° u_B=Ucos(w-120°)、\vec{U_B}=U\angle{-120°} uB=Ucos(w−120°)、UB=U∠−120°
u C = U c o s ( w + 120 ° ) 、 U C ⃗ = U ∠ 120 ° u_C=Ucos(w+120°)、\vec{U_C}=U\angle{120°} uC=Ucos(w+120°)、UC=U∠120°
由上图可知
u A + u B + u C = 0 、 U A ⃗ + U B ⃗ + U C ⃗ = 0 u_A+u_B+u_C=0、\vec{U_A}+\vec{U_B}+\vec{U_C}=0 uA+uB+uC=0、UA+UB+UC=0
(注:ABC为正序,较为常用,CBA为逆序
三相负载
三个阻抗连接成星形或角形即构成星形负载和角形负载。
示例如下,其中,Zl和ZN为端线负载,若将N-N’连接,则为三相四线制,其余为三相三线制。
通常,三相电源、三相端线阻抗(不含ZN)均对称,三相负载则不一定对称。
以下给出负载星角变换的公式:
角变星:
{ R 1 = R 31 R 12 R 12 + R 23 + R 31 R 2 = R 12 R 23 R 12 + R 23 + R 31 R 3 = R 23 R 31 R 12 + R 23 + R 31 \begin{cases} R_1=\frac{R_{31}R_{12}}{R_{12}+R_{23}+R_{31}} \\R_2=\frac{R_{12}R_{23}}{R_{12}+R_{23}+R_{31}} \\ R_3=\frac{R_{23}R_{31}}{R_{12}+R_{23}+R_{31}}\end{cases} ⎩⎪⎨⎪⎧R1=R12+R23+R31R31R12R2=R12+R23+R31R12R23R3=R12+R23+R31R23R31
星变角:
{ R 12 = R 1 R 2 + R 2 R 3 + R 3 R 1 R 3 R 23 = R 1 R 2 + R 2 R 3 + R 3 R 1 R 1 R 31 = R 1 R 2 + R 2 R 3 + R 3 R 1 R 2 \begin{cases} R_{12}= \frac{R_1R_2+R_2R_3+R_3R_1}{R_3} \\ R_{23}= \frac{R_1R_2+R_2R_3+R_3R_1}{R_1} \\R_{31}=\frac{R_1R_2+R_2R_3+R_3R_1}{R_2}\end{cases} ⎩⎪⎨⎪⎧