游戏技术分享(四):基于深度学习的屏幕触摸异常检测方案,附架构图示!

基于深度学习的屏幕触摸异常检测方案包含三种检测引擎,三个引擎相辅相成,结
果互补,一起对外输出 AI 检测能力。三个引擎包括:监督引擎、无监督引擎、规则
(专家经验)引擎。
异常个体检测
在线实时检测玩家的轨迹是否异常。将“规则”与“监督模型”以微服务的形式部署在线
上,提供实时的 API 检测服务。
  • 规则:根据专家经验,对轨迹中点的“密度”、“数量”、“重复次数”等特征进行归纳,筛选明显是外挂行为的轨迹。比如,轨迹在三个相同的点之间来回重复
  • 监督模型:提取“时空特征”时训练得到的深度神经网络模型,这里我们采用的是“层级注意力网络”(Hierarchical Attention Networks)的分类模型;
在实际使用中,我们有多套规则与多个监督模型的微服务。利用“集成学习”的思想, 群体性检测用于找出利用同步器等工具实现“伪人为”操作的群体,为人所诟病的工作室往往就包含在这些群体中。群体性检测需要积攒够一定量的玩家轨迹之后,批量地触发检测,既可以选择定时触发,也可以选择定量触发(积攒足够数据量后进行触发)。
在我们的实践中,我们采用 T+1 的方式触发检测,即每日定时触发,根据历史已有的轨迹数据来检测上一天异常群体。聚类得到簇群后,通过“轮廓系数”(Silhouette Coefficient)来筛选“异常的群体”`
  • 阈值筛选:对历史数据进行聚类得到簇群与对应的轮廓系数,由专家对簇群进行筛选;筛选出的簇群对应的系数取统计值(平均、中位数等)作为阈值
  • 比例筛选:筛选轮廓系数最大的 TOP-X 或 Y% 的簇群;
  • 筛选的方式不一而足,根据业务实际情况进行调整(考虑游戏类型、运营目标等)

除了检测异常群体之外,无监督引擎还可以将已知的可疑群体记录下来,交给专家进行判断,进而发现新的异常轨迹形态,新的异常轨迹类型将会归纳总结为新的规则,用于提高”个体检测“的检测覆盖率。

下一期,会分享该方案的落地应用场景,请大家关注我,获取更多内容~

—— END——

今天先聊到这里,看到这里的游戏人,期待下次为大家分享更多游戏行业洞察!

我来自网易~ 是你最得力的游戏行业战略家,也是最硬核的游戏技术布道师,一起让技术发光~ 欢迎各位游戏人一起探讨交流~

tips:《网易智企游戏AI指南》免费领取方式——评论区留言【指南】,立即get√

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值