阅读笔记 | REFORMER: THE EFFICIENT TRANSFORMER

论文介绍了一种名为Reformer的Transformer变体,通过使用LSH和可逆残差网络降低长序列任务中的计算与内存负担。实验结果显示,Reformer在保持模型性能的同时,显著提高了处理长序列的能力。
摘要由CSDN通过智能技术生成

阅读论文:

Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya. “Reformer: The efficient transformer.” arXiv preprint arXiv:2001.04451 (2020).

背景与动机

这篇论文发表较早,主要关注Transformer的效率问题。标准的Transformer模型在许多自然语言处理任务上取得了最先进的结果,但它在长序列上的训练和推理代价非常大。主要的计算和内存瓶颈在于自注意力机制中的点积注意力,其复杂度为 O ( L 2 ) \Omicron(L^2) O(L2),其中 L L L是序列长度。随着 L L L的增大,计算和内存需求急剧增加。因此,Transformer难以扩展到处理长序列的任务。

模型与方法

  1. 引入基于局部敏感哈希(LSH)的近似注意力机制,将自注意力的复杂度从 O ( L 2 ) \Omicron(L^2) O(L2)降低到 O ( L log ⁡ L ) \Omicron(L\log L) O(LlogL),大大减少了内存和计算需求。具体来说,文章首先使用随机投影作为敏感哈希函数。相似的query和key通过投影转换后可以映射到相同的哈希桶中。然后根据query和key的哈希值对序列进行排序。相似的query和key会聚集在一起。在排序后的序列上,将每个query块只与相邻的几个query块计算注意力。这样可以大约保证每个块内的query可以attend到相似的key。最后使用多轮不同的哈希函数和注意力计算,综合多个注意力输出,可以降低哈希误差。
  2. 使用17年别人提出的一个可逆残差网络取代标准的前馈和残差连接以减少内存占用。这允许在训练过程中只需保存每层的一个激活副本,而不是N个副本,其中N是层数。
  3. 将前馈网络中的激活拆分为多块分别处理,减小每层的内存占用。

实验

在拼写重复、机器翻译以及图像生成等多个任务上验证了Reformer的有效性。结果表明,Reformer模型比标准Transformer有相同的建模能力,但在长序列任务上速度更快,内存占用也少得多。例如,在64K词元的英文文本建模任务上,12层的Reformer只需要一个GPU就可以高效训练,而Transformer基本无法进行训练。

总的来说,Reformer是一个既高效又强大的长序列Transformer模型。它结合了可缩放的近似注意力机制与高效的网络结构,能够在单机单卡上处理长度达10万词元的任务,为Transformer的工业应用提供了可能性。

个人思考

  • 文章中实现更高效自注意力的方式是寻找近似方法进行替代,这对于后面的改进是有启发的,因为类似的替代并非只有一种。而且这类改进存在一个好处就是可以在用于电负荷时序预测模型中去带一个计算与存储效率的点,这也是前面阅读的所有时序预测论文都在关注的一个点。
  • 这篇论文也从网络结构方面对内存消耗进行了优化,对残差连接进行了优化。在Informer中也对结构进行了关注,具体是改进了decoder的自回归方式。可见结构方面进行考虑的优化也是大有可为的。此外,几个最近的Transformer时序预测模型在残差连接上基本没有考虑太多,用的是标准残差连接,可以将可逆残差连接放到里面试试效果。
  • 23
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一条独龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值