- 最小割(Minimum Cut)
在图论中,图的最小割是划分两个不相交的子集时,所割掉的边为最小,如绿色的线:
具体的例子:
从s点到t点有三条路径:
s --> a --> t;
s --> a --> b --> t;
s --> b --> t.
现要求在保证所剪去边的权重最小的情况下,使得s --> t 的路径不存在。答案是剪去s --> a (2) 和 b --> t (3) 两条边,这种方法称为最小割。
- 最大流 (Max Flow)
假设从点s有源源不断的水流出,将每条边为能通过的最大水量,例如s --> a 最大的水量为2,最后点t能接受的水流量是多少?
s --> a --> t; (2)
s --> a --> b --> t; (0,和其他两条路重复)
s --> b --> t. (3)
最后流入的水流量也为5。
- 证明最大流问题 == 最小流问题
(1)最大割可能大于最小流吗?
(2)最大割可能小于最小流吗?
- GraphCut
GraphCut利用最小割最大流算法进行图像的分割,使用时需要给定前景和背景的点(种子,seed)作为输入,算法将建立各个像素点与前景和背景相似度的赋权图,然后通过最小割最大流区分前景和背景。