最小割最大流 Minimum Cut-Max Flow/图割 Graph Cut的理解

  • 最小割(Minimum Cut)

在图论中,图的最小割是划分两个不相交的子集时,所割掉的边为最小,如绿色的线:

具体的例子:

从s点到t点有三条路径:

s --> a --> t;

s --> a --> b --> t;

s --> b --> t.

现要求在保证所剪去边的权重最小的情况下,使得s --> t 的路径不存在。答案是剪去s --> a (2) 和 b --> t (3) 两条边,这种方法称为最小割。

 

  • 最大流 (Max Flow)

假设从点s有源源不断的水流出,将每条边为能通过的最大水量,例如s --> a 最大的水量为2,最后点t能接受的水流量是多少?

s --> a --> t; (2)

s --> a --> b --> t; (0,和其他两条路重复)

s --> b --> t. (3)

最后流入的水流量也为5。

 

  • 证明最大流问题 == 最小流问题

(1)最大割可能大于最小流吗?

(2)最大割可能小于最小流吗?

 

  • GraphCut

GraphCut利用最小割最大流算法进行图像的分割,使用时需要给定前景和背景的点(种子,seed)作为输入,算法将建立各个像素点与前景和背景相似度的赋权图,然后通过最小割最大流区分前景和背景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值