参数估计方法简述(贝叶斯估计,最大后验概率估计,极大似然估计)

参数估计方法


概率与统计:

  • 概率:已知模型和参数,推数据结果出现的概率
  • 统计:已知诸多结果,通过结果推概率分布(概率、参数、模型)
    比如,我们现在要抛一个硬币,结果会是正面或者反面。我们可以把这个过程,视作一个系统,我们往系统里输入一个“抛硬币”的事件,系统就会返回一个结果(正面或反面)。所谓模型,就是这个系统在决定输出什么结果的时候,对各个结果分配的权重,权重越大,结果越容易出现。
    我们在小学的时候,会经常遇到这样的问题:给了一堆苹果,有红的有绿的,让我们画一个统计表或者统计图,之后算一算拿到红苹果的可能性有多大,这就是一个典型的统计问题,如果苹果够多,我们就可以把红苹果的频率视作概率,也就是我们模型的参数。

贝叶斯定理

贝叶斯法则:
  • 贝叶斯法则说了一件事:通常情况下,事件A和事件B发生的条件下的概率事件B在事件A发生的概率 是不同的
    P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) (1.1) P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} \tag{1.1} P(AB)=P(B)P(BA)P(A)(1.1)
    将底部展开:

    P ( A ∣ B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ) = P ( B ∣ A ) ⋅ P ( A ) P ( B ∣ A ) P ( A ) + P ( B ∣ ∼ A ) P ( ∼ A ) (1.2) \begin{aligned} P(A|B) &= \frac{P(B|A) \cdot P(A)}{P(B)}\\ & = \frac{P(B|A) \cdot P(A)} {P(B|A) P(A) + P(B|\sim A)P(\sim A)} \end{aligned} \tag{1.2} P(AB)=P(B)P(BA)P(A)=P(BA)P(A)+P(BA)P(A)P(BA)P(A)(1.2)

    如果A包含很多种情况,我们就得到贝叶斯公式:

P ( A i ∣ B ) = P ( B ∣ A i ) ⋅ P ( A i ) P ( B ) = P ( A i ) P ( B ∣ A i ) ∑ j = 1 n P ( B ∣ A j ) P ( A j ) (1.3) \begin{aligned}P(A_i|B) &= \frac{P(B|A_i) \cdot P(A_i)}{P(B)}\\ &= \frac{P(A_i)P(B|A_i)}{\sum^n_{j=1}P(B|A_j)P(A_j)} \end{aligned} \tag{1.3} P(AiB)=P(B)P(BAi)P(Ai)=

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值