【机器学习】统计学习方法(4)-贝叶斯估计-笔记

本文详细介绍了朴素贝叶斯法,包括其基本方法、后验概率最大化的含义以及参数估计。通过贝叶斯定理和特征条件独立假设,解释了如何进行分类,并探讨了极大似然估计和贝叶斯估计在处理概率为0时的作用。
摘要由CSDN通过智能技术生成

第四章 朴素贝叶斯法

  • 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。
  • 朴素贝叶斯法与贝叶斯估计不同。

4.1  朴素贝叶斯法的学习和分类

4.1.1 基本方法

  • 输入: X ⊆ R n \mathcal{X} \subseteq R^n XRn为n维向量集合
  • 输出: Y = { c 1 , c 2 , . . . , c k } \mathcal{Y} = \{c_1,c_2,...,c_k\} Y={ c1,c2,...,ck},输出为类标记, y ∈ Y y\in \mathcal{Y} yY
  • 数据集: T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={ (x1,y1),(x2,y2),...,(xN,yN)} P ( X , Y ) P(X,Y) P(X,Y)独立同分布产生。
  • 训练过程:通过训练数据集,学习 P ( X , Y ) P(X,Y) P(X,Y)(联合分布概率),也就是分别学习 先 验 概 率 分 布 P ( Y = c k ) , k = 1 , 2 , 3... k 先验概率分布P(Y = c_k),k = 1,2,3...k P(Y=ck),k=1,2,3...k 条 件 概 率 分 布 P ( X = x ∣ y = c k ) = P ( X ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k } 条件概率分布P(X =x|y = c_k) = P(X^{(1)}=x^{(1)},...,X^{(n)} = x^{(n)}|Y =c_k\} P(X=xy=ck)=P(X(1)=x(1),...,X(n)=x(n)Y=ck}
    • 但是这种条件概率的计算方式由指数数量的参数,其估计实际是不可行的。

朴素贝叶斯法:

  • 朴素贝叶斯法为了解决参数过多的问题,做出了条件独立性的假设:
    P ( X = x ∣ Y = c k ) = P ( x ( 1 ) = x ( 1 ) , . . . , X ( n ) = x ( n ) ∣ Y = c k ) = ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c k ) P(X = x|Y = c_k) \\= P(x^{(1)}=x^{(1)},... ,X^{(n)}=x^{(n)}|Y = c_k) \\= \prod^n_{j=1}P(X^{(j)}=x^{(j)}|Y = c_k) P(X=xY=ck)=P(x(1)=x(1),...,X(n)=x(n)Y=ck)=j=1nP(X(j)=x(j)Y=ck)
    即假设用于分类的特征在类确定的条件下是相互独立的。
  • 后验概率的计算由贝叶斯定理得出:
    P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P(Y = c_k|X = x)=\frac{P(X = x|Y=c_k)P(Y=c_k)}{\sum_kP(X = x|Y=c_k)P(Y = c_k)}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值