归结反演介绍

归结原理给出了证明子句集不可满足性的方法。
如欲证明Q为P1,P2,…,Pn的逻辑结论,只需证 (P1∧P2∧…∧Pn)∧¬Q 是不可满足的。
应用归结原理证明定理的过程称为归结反演。 设F为已知前提的公式集,Q为目标公式(结论),用归结反演证明Q为真的步骤是:
1.否定Q,得到¬Q;
2.把¬Q并入到公式集F中,得到{F, ¬Q};
3.把公式集{F, ¬Q}化为子句集S;
4.应用归结原理对子句集S中的子句进行归结,并把每次归结得到的归结式都并入S中。如此反复进行,若出现了空子句,则停止归结(不论是否还剩余子句集),此时就证明了Q为真。


注意:此时归结完成后(2)并没有进行归结,但是已经出现了空子句,那么就应停止归结。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值