【pytorch】torch.cuda.empty_cache()==>释放缓存分配器当前持有的且未占用的缓存显存

PyTorch训练过程中可能会积累大量无用的临时变量导致GPU内存不足。`torch.cuda.empty_cache()`函数用于释放缓存的未占用GPU内存,优化内存使用,但不会释放实际Tensor所占内存。了解这一技巧有助于防止训练过程中的内存溢出问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pytorch 训练时无用的临时变量可能会越来越多,导致 out of memory ,可以使用下面语句来清理这些不需要的变量。

torch.cuda.empty_cache()

官网 上的解释为:

Releases all unoccupied cached memory currently held by the caching allocator so that those can be used in other GPU application and visible invidia-smi. 

意思就是PyTorch的缓存分配器会事先分配一些固定的显存,即使实际上tensors并没有使用完这些显存,这些显存也不能被其他应用使用。这个分配过程由第一次CUDA内存访问触发的。

而 torch.cuda.empty_cache() 的作用就是释放缓存分配器当前持有的且未占用的缓存显存,以便这些显存可以被其他GPU应用程序中使用,并且通过 nvidia-smi命令可见。注意使用此命令不会释放tensors占用的显存

对于不用的数据变量,Pytorch 可以自动进行回收从而释放相应的显存。

PyTorch trick 集锦 - 知乎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值