MUSIQ: Multi-scale Image Quality Transformer【图像质量评估】

MUSIQ: Multi-scale Image Quality Transformer

MUSIQ:Transformer多尺度图像质量评估

paper:https://arxiv.org/abs/2108.05997

code:google-research/musiq at master · google-research/google-research · GitHub


本文提出了一种多尺度图像质量Transformer:MUSIQ,它可以处理具有不同分辨率、尺寸和宽高比的全尺寸图像输入,可以捕获不同粒度的图像质量,在多个大规模 IQA数据集上表现SOTA! 

 Figure 1. In CNN-based models (b), images need to be resized or cropped to a fixed shape for batch training. However, such preprocessing can alter image aspect ratio and composition, thus impacting image quality. Our patch-based MUSIQ model (a) can process the full-size image and extract multi-scale features, which aligns with the human visual system.

摘要

Image quality assessment (IQA) is an important research topic for understanding and improving visual experience. The current state-of-the-art IQA methods are based on convolutional neural networks (CNNs). The performance of CNN-based models is often compromised by the fixed shape constraint in batch training. To accommodate this, the input images are usually resized and cropped to a fixed shape, causing image quality degradation. To address this, we design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios. With a multi-scale image representation, our proposed method can capture image quality at different granularities. Furthermore, a novel hash-based 2D spatial embedding and a scale embedding is proposed to support the positional embedding in the multi-scale representation. Experimental results verify that our method can achieve state-of-the-art performance on multiple large scale IQA datasets such as PaQ-2-PiQ [43], SPAQ [12], and KonIQ10k [17]. 

ICCV 2021 | 谷歌提出MUSIQ:多尺度图像质量Transformer - 知乎

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值