“零阶优化”是什么?

零阶最优化就是不根据导数求解,例如模式搜索、坐标下降。

一阶最优化只根据一阶导数求解,一般是梯度下降和它的变种。


Optimizing molecules using efficient queries from property evaluations

 此文使用了“零阶优化”,那么“零阶优化”到底是什么?有普通的优化相比优势在哪里?


零阶优化(Zeroth-Order Optimization):

  1. 梯度信息不需要目标函数的梯度或Hessian矩阵信息。它仅仅依赖于目标函数的值。【通过为梯度估计和伪梯度下降进行优化】
  2. 计算成本:通常需要更多的函数评估次数,因为它没有直接的梯度信息来指导搜索方向。
  3. 应用场景:适用于梯度难以或无法计算的情况,例如目标函数不可微或者梯度计算代价极高的情况。
  4. 实现:通过对目标函数在不同点的评估来估计梯度方向,使用诸如有限差分方法的技术。

一阶优化(First-Order Optimization):

  1. 梯度信息:使用目标函数的一阶导数(梯度)信息。
  2. 计算成本:每次迭代通常只需要一次梯度计算,因此在梯度容易计算的情况下更高效。
  3. 应用场景:适用于目标函数是可微的,并且梯度计算是可行的。
  4. 实现:如梯度下降法,每一步都沿着梯度的反方向更新当前点。

Nat. Mach. Intell. | 使用属性评估中的高效查询优化分子

【原创】美国IBM研究院Payel Das等人NMI论文:优化分子的通用型机器学习框架

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pengsen Ma

太谢谢了

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值